Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) llama-3-8b-Instruct - GGUF - Model creator: https://huggingface.co/unsloth/ - Original model: https://huggingface.co/unsloth/llama-3-8b-Instruct/ | Name | Quant method | Size | | ---- | ---- | ---- | | [llama-3-8b-Instruct.Q2_K.gguf](https://huggingface.co/RichardErkhov/unsloth_-_llama-3-8b-Instruct-gguf/blob/main/llama-3-8b-Instruct.Q2_K.gguf) | Q2_K | 2.96GB | | [llama-3-8b-Instruct.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/unsloth_-_llama-3-8b-Instruct-gguf/blob/main/llama-3-8b-Instruct.IQ3_XS.gguf) | IQ3_XS | 3.28GB | | [llama-3-8b-Instruct.IQ3_S.gguf](https://huggingface.co/RichardErkhov/unsloth_-_llama-3-8b-Instruct-gguf/blob/main/llama-3-8b-Instruct.IQ3_S.gguf) | IQ3_S | 3.43GB | | [llama-3-8b-Instruct.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/unsloth_-_llama-3-8b-Instruct-gguf/blob/main/llama-3-8b-Instruct.Q3_K_S.gguf) | Q3_K_S | 3.41GB | | [llama-3-8b-Instruct.IQ3_M.gguf](https://huggingface.co/RichardErkhov/unsloth_-_llama-3-8b-Instruct-gguf/blob/main/llama-3-8b-Instruct.IQ3_M.gguf) | IQ3_M | 3.52GB | | [llama-3-8b-Instruct.Q3_K.gguf](https://huggingface.co/RichardErkhov/unsloth_-_llama-3-8b-Instruct-gguf/blob/main/llama-3-8b-Instruct.Q3_K.gguf) | Q3_K | 3.74GB | | [llama-3-8b-Instruct.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/unsloth_-_llama-3-8b-Instruct-gguf/blob/main/llama-3-8b-Instruct.Q3_K_M.gguf) | Q3_K_M | 3.74GB | | [llama-3-8b-Instruct.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/unsloth_-_llama-3-8b-Instruct-gguf/blob/main/llama-3-8b-Instruct.Q3_K_L.gguf) | Q3_K_L | 4.03GB | | [llama-3-8b-Instruct.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/unsloth_-_llama-3-8b-Instruct-gguf/blob/main/llama-3-8b-Instruct.IQ4_XS.gguf) | IQ4_XS | 4.18GB | | [llama-3-8b-Instruct.Q4_0.gguf](https://huggingface.co/RichardErkhov/unsloth_-_llama-3-8b-Instruct-gguf/blob/main/llama-3-8b-Instruct.Q4_0.gguf) | Q4_0 | 4.34GB | | [llama-3-8b-Instruct.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/unsloth_-_llama-3-8b-Instruct-gguf/blob/main/llama-3-8b-Instruct.IQ4_NL.gguf) | IQ4_NL | 4.38GB | | [llama-3-8b-Instruct.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/unsloth_-_llama-3-8b-Instruct-gguf/blob/main/llama-3-8b-Instruct.Q4_K_S.gguf) | Q4_K_S | 4.37GB | | [llama-3-8b-Instruct.Q4_K.gguf](https://huggingface.co/RichardErkhov/unsloth_-_llama-3-8b-Instruct-gguf/blob/main/llama-3-8b-Instruct.Q4_K.gguf) | Q4_K | 4.58GB | | [llama-3-8b-Instruct.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/unsloth_-_llama-3-8b-Instruct-gguf/blob/main/llama-3-8b-Instruct.Q4_K_M.gguf) | Q4_K_M | 4.58GB | | [llama-3-8b-Instruct.Q4_1.gguf](https://huggingface.co/RichardErkhov/unsloth_-_llama-3-8b-Instruct-gguf/blob/main/llama-3-8b-Instruct.Q4_1.gguf) | Q4_1 | 4.78GB | | [llama-3-8b-Instruct.Q5_0.gguf](https://huggingface.co/RichardErkhov/unsloth_-_llama-3-8b-Instruct-gguf/blob/main/llama-3-8b-Instruct.Q5_0.gguf) | Q5_0 | 5.21GB | | [llama-3-8b-Instruct.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/unsloth_-_llama-3-8b-Instruct-gguf/blob/main/llama-3-8b-Instruct.Q5_K_S.gguf) | Q5_K_S | 5.21GB | | [llama-3-8b-Instruct.Q5_K.gguf](https://huggingface.co/RichardErkhov/unsloth_-_llama-3-8b-Instruct-gguf/blob/main/llama-3-8b-Instruct.Q5_K.gguf) | Q5_K | 5.34GB | | [llama-3-8b-Instruct.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/unsloth_-_llama-3-8b-Instruct-gguf/blob/main/llama-3-8b-Instruct.Q5_K_M.gguf) | Q5_K_M | 5.34GB | | [llama-3-8b-Instruct.Q5_1.gguf](https://huggingface.co/RichardErkhov/unsloth_-_llama-3-8b-Instruct-gguf/blob/main/llama-3-8b-Instruct.Q5_1.gguf) | Q5_1 | 5.65GB | | [llama-3-8b-Instruct.Q6_K.gguf](https://huggingface.co/RichardErkhov/unsloth_-_llama-3-8b-Instruct-gguf/blob/main/llama-3-8b-Instruct.Q6_K.gguf) | Q6_K | 6.14GB | Original model description: --- language: - en license: apache-2.0 library_name: transformers tags: - unsloth - transformers - llama - llama-3 --- # Finetune Mistral, Gemma, Llama 2-5x faster with 70% less memory via Unsloth! Directly quantized 4bit model with `bitsandbytes`. We have a Google Colab Tesla T4 notebook for Llama-3 8b here: https://colab.research.google.com/drive/135ced7oHytdxu3N2DNe1Z0kqjyYIkDXp?usp=sharing [](https://discord.gg/u54VK8m8tk) [](https://ko-fi.com/unsloth) [](https://github.com/unslothai/unsloth) ## ✨ Finetune for Free All notebooks are **beginner friendly**! Add your dataset, click "Run All", and you'll get a 2x faster finetuned model which can be exported to GGUF, vLLM or uploaded to Hugging Face. | Unsloth supports | Free Notebooks | Performance | Memory use | |-----------------|--------------------------------------------------------------------------------------------------------------------------|-------------|----------| | **Llama-3 8b** | [▶️ Start on Colab](https://colab.research.google.com/drive/135ced7oHytdxu3N2DNe1Z0kqjyYIkDXp?usp=sharing) | 2.4x faster | 58% less | | **Gemma 7b** | [▶️ Start on Colab](https://colab.research.google.com/drive/10NbwlsRChbma1v55m8LAPYG15uQv6HLo?usp=sharing) | 2.4x faster | 58% less | | **Mistral 7b** | [▶️ Start on Colab](https://colab.research.google.com/drive/1Dyauq4kTZoLewQ1cApceUQVNcnnNTzg_?usp=sharing) | 2.2x faster | 62% less | | **Llama-2 7b** | [▶️ Start on Colab](https://colab.research.google.com/drive/1lBzz5KeZJKXjvivbYvmGarix9Ao6Wxe5?usp=sharing) | 2.2x faster | 43% less | | **TinyLlama** | [▶️ Start on Colab](https://colab.research.google.com/drive/1AZghoNBQaMDgWJpi4RbffGM1h6raLUj9?usp=sharing) | 3.9x faster | 74% less | | **CodeLlama 34b** A100 | [▶️ Start on Colab](https://colab.research.google.com/drive/1y7A0AxE3y8gdj4AVkl2aZX47Xu3P1wJT?usp=sharing) | 1.9x faster | 27% less | | **Mistral 7b** 1xT4 | [▶️ Start on Kaggle](https://www.kaggle.com/code/danielhanchen/kaggle-mistral-7b-unsloth-notebook) | 5x faster\* | 62% less | | **DPO - Zephyr** | [▶️ Start on Colab](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) | 1.9x faster | 19% less | - This [conversational notebook](https://colab.research.google.com/drive/1Aau3lgPzeZKQ-98h69CCu1UJcvIBLmy2?usp=sharing) is useful for ShareGPT ChatML / Vicuna templates. - This [text completion notebook](https://colab.research.google.com/drive/1ef-tab5bhkvWmBOObepl1WgJvfvSzn5Q?usp=sharing) is for raw text. This [DPO notebook](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) replicates Zephyr. - \* Kaggle has 2x T4s, but we use 1. Due to overhead, 1x T4 is 5x faster.