Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) MultiPL-T-StarCoderBase_1b - AWQ - Model creator: https://huggingface.co/nuprl/ - Original model: https://huggingface.co/nuprl/MultiPL-T-StarCoderBase_1b/ Original model description: --- license: bigscience-openrail-m library_name: transformers tags: - code - gpt_bigcode datasets: - nuprl/MultiPL-T metrics: - code_eval model-index: - name: MultiPLCoder-1b-OCaml results: - task: type: text-generation dataset: name: MultiPL-HumanEval (Lua) type: nuprl/MultiPL-E metrics: - type: pass@1 value: 0.173 name: pass@1 verified: true - type: pass@1 value: 0.113 name: pass@1 verified: true - type: pass@1 value: 0.097 name: pass@1 verified: true --- # MultiPLCoder-1b 1 billion parameter version of MultiPLCoder, a set of StarCoder-based models finetuned on the [MultiPL-T dataset](https://huggingface.co/datasets/nuprl/MultiPL-T). These models are state-of-the-art at low-resource languages, such as: Lua, Racket, and OCaml. ## Language Revision Index This is the revision index for the best-performing models for their respective langauge. | Langauge | Revision ID | Epoch | | ------------- | ----------- | ----- | | Lua | `7e96d931547e342ad0661cdd91236fe4ccf52545` | 3 | | Racket | `2cdc541bee1db4da80c0b43384b0d6a0cacca5b2` | 5 | | OCaml | `e8a24f9e2149cbda8c3cca264a53c2b361b7a031` | 6 | ## Usage To utilize one of the models in this repository, you must first select a commit revision for that model from the table above. For example, to use the Lua model: ```py from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("nuprl/MultiPLCoder-1b") lua_revision="7e96d931547e342ad0661cdd91236fe4ccf52545" model = AutoModelForCausalLM.from_pretrained("nuprl/MultiPLCoder-1b", revision=lua_revision) ``` Note that the model's default configuration does not enable caching, therefore you must specify to use the cache on generation. ```py toks = tokenizer.encode("-- Hello World", return_tensors="pt") out = model.generate(toks, use_cache=True, do_sample=True, temperature=0.2, top_p=0.95, max_length=50) print(tokenizer.decode(out[0], skip_special_tokens=True)) ``` ``` -- Hello World! -- :param name: The name of the person to say hello to -- :return: A greeting local function say_hello(name) return "Hello ".. name end ```