Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) deepseek-coder-7b-instruct-v1.5 - GGUF - Model creator: https://huggingface.co/deepseek-ai/ - Original model: https://huggingface.co/deepseek-ai/deepseek-coder-7b-instruct-v1.5/ | Name | Quant method | Size | | ---- | ---- | ---- | | [deepseek-coder-7b-instruct-v1.5.Q2_K.gguf](https://huggingface.co/RichardErkhov/deepseek-ai_-_deepseek-coder-7b-instruct-v1.5-gguf/blob/main/deepseek-coder-7b-instruct-v1.5.Q2_K.gguf) | Q2_K | 2.53GB | | [deepseek-coder-7b-instruct-v1.5.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/deepseek-ai_-_deepseek-coder-7b-instruct-v1.5-gguf/blob/main/deepseek-coder-7b-instruct-v1.5.IQ3_XS.gguf) | IQ3_XS | 2.79GB | | [deepseek-coder-7b-instruct-v1.5.IQ3_S.gguf](https://huggingface.co/RichardErkhov/deepseek-ai_-_deepseek-coder-7b-instruct-v1.5-gguf/blob/main/deepseek-coder-7b-instruct-v1.5.IQ3_S.gguf) | IQ3_S | 2.92GB | | [deepseek-coder-7b-instruct-v1.5.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/deepseek-ai_-_deepseek-coder-7b-instruct-v1.5-gguf/blob/main/deepseek-coder-7b-instruct-v1.5.Q3_K_S.gguf) | Q3_K_S | 2.92GB | | [deepseek-coder-7b-instruct-v1.5.IQ3_M.gguf](https://huggingface.co/RichardErkhov/deepseek-ai_-_deepseek-coder-7b-instruct-v1.5-gguf/blob/main/deepseek-coder-7b-instruct-v1.5.IQ3_M.gguf) | IQ3_M | 3.06GB | | [deepseek-coder-7b-instruct-v1.5.Q3_K.gguf](https://huggingface.co/RichardErkhov/deepseek-ai_-_deepseek-coder-7b-instruct-v1.5-gguf/blob/main/deepseek-coder-7b-instruct-v1.5.Q3_K.gguf) | Q3_K | 3.22GB | | [deepseek-coder-7b-instruct-v1.5.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/deepseek-ai_-_deepseek-coder-7b-instruct-v1.5-gguf/blob/main/deepseek-coder-7b-instruct-v1.5.Q3_K_M.gguf) | Q3_K_M | 3.22GB | | [deepseek-coder-7b-instruct-v1.5.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/deepseek-ai_-_deepseek-coder-7b-instruct-v1.5-gguf/blob/main/deepseek-coder-7b-instruct-v1.5.Q3_K_L.gguf) | Q3_K_L | 3.49GB | | [deepseek-coder-7b-instruct-v1.5.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/deepseek-ai_-_deepseek-coder-7b-instruct-v1.5-gguf/blob/main/deepseek-coder-7b-instruct-v1.5.IQ4_XS.gguf) | IQ4_XS | 3.56GB | | [deepseek-coder-7b-instruct-v1.5.Q4_0.gguf](https://huggingface.co/RichardErkhov/deepseek-ai_-_deepseek-coder-7b-instruct-v1.5-gguf/blob/main/deepseek-coder-7b-instruct-v1.5.Q4_0.gguf) | Q4_0 | 3.73GB | | [deepseek-coder-7b-instruct-v1.5.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/deepseek-ai_-_deepseek-coder-7b-instruct-v1.5-gguf/blob/main/deepseek-coder-7b-instruct-v1.5.IQ4_NL.gguf) | IQ4_NL | 3.74GB | | [deepseek-coder-7b-instruct-v1.5.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/deepseek-ai_-_deepseek-coder-7b-instruct-v1.5-gguf/blob/main/deepseek-coder-7b-instruct-v1.5.Q4_K_S.gguf) | Q4_K_S | 3.75GB | | [deepseek-coder-7b-instruct-v1.5.Q4_K.gguf](https://huggingface.co/RichardErkhov/deepseek-ai_-_deepseek-coder-7b-instruct-v1.5-gguf/blob/main/deepseek-coder-7b-instruct-v1.5.Q4_K.gguf) | Q4_K | 3.93GB | | [deepseek-coder-7b-instruct-v1.5.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/deepseek-ai_-_deepseek-coder-7b-instruct-v1.5-gguf/blob/main/deepseek-coder-7b-instruct-v1.5.Q4_K_M.gguf) | Q4_K_M | 3.93GB | | [deepseek-coder-7b-instruct-v1.5.Q4_1.gguf](https://huggingface.co/RichardErkhov/deepseek-ai_-_deepseek-coder-7b-instruct-v1.5-gguf/blob/main/deepseek-coder-7b-instruct-v1.5.Q4_1.gguf) | Q4_1 | 4.1GB | | [deepseek-coder-7b-instruct-v1.5.Q5_0.gguf](https://huggingface.co/RichardErkhov/deepseek-ai_-_deepseek-coder-7b-instruct-v1.5-gguf/blob/main/deepseek-coder-7b-instruct-v1.5.Q5_0.gguf) | Q5_0 | 4.48GB | | [deepseek-coder-7b-instruct-v1.5.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/deepseek-ai_-_deepseek-coder-7b-instruct-v1.5-gguf/blob/main/deepseek-coder-7b-instruct-v1.5.Q5_K_S.gguf) | Q5_K_S | 4.48GB | | [deepseek-coder-7b-instruct-v1.5.Q5_K.gguf](https://huggingface.co/RichardErkhov/deepseek-ai_-_deepseek-coder-7b-instruct-v1.5-gguf/blob/main/deepseek-coder-7b-instruct-v1.5.Q5_K.gguf) | Q5_K | 4.59GB | | [deepseek-coder-7b-instruct-v1.5.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/deepseek-ai_-_deepseek-coder-7b-instruct-v1.5-gguf/blob/main/deepseek-coder-7b-instruct-v1.5.Q5_K_M.gguf) | Q5_K_M | 4.59GB | | [deepseek-coder-7b-instruct-v1.5.Q5_1.gguf](https://huggingface.co/RichardErkhov/deepseek-ai_-_deepseek-coder-7b-instruct-v1.5-gguf/blob/main/deepseek-coder-7b-instruct-v1.5.Q5_1.gguf) | Q5_1 | 4.86GB | | [deepseek-coder-7b-instruct-v1.5.Q6_K.gguf](https://huggingface.co/RichardErkhov/deepseek-ai_-_deepseek-coder-7b-instruct-v1.5-gguf/blob/main/deepseek-coder-7b-instruct-v1.5.Q6_K.gguf) | Q6_K | 5.28GB | Original model description: --- license: other license_name: deepseek license_link: LICENSE ---

DeepSeek Coder

[🏠Homepage] | [🤖 Chat with DeepSeek Coder] | [Discord] | [Wechat(微信)]


### 1. Introduction of Deepseek-Coder-7B-Instruct v1.5 Deepseek-Coder-7B-Instruct-v1.5 is continue pre-trained from Deepseek-LLM 7B on 2T tokens by employing a window size of 4K and next token prediction objective, and then fine-tuned on 2B tokens of instruction data. - **Home Page:** [DeepSeek](https://deepseek.com/) - **Repository:** [deepseek-ai/deepseek-coder](https://github.com/deepseek-ai/deepseek-coder) - **Chat With DeepSeek Coder:** [DeepSeek-Coder](https://coder.deepseek.com/) ### 2. Evaluation Results DeepSeek Coder ### 3. How to Use Here give some examples of how to use our model. #### Chat Model Inference ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-coder-7b-instruct-v1.5", trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-coder-7b-instruct-v1.5", trust_remote_code=True).cuda() messages=[ { 'role': 'user', 'content': "write a quick sort algorithm in python."} ] inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device) outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, top_k=50, top_p=0.95, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id) print(tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)) ``` ### 4. License This code repository is licensed under the MIT License. The use of DeepSeek Coder models is subject to the Model License. DeepSeek Coder supports commercial use. See the [LICENSE-MODEL](https://github.com/deepseek-ai/deepseek-coder/blob/main/LICENSE-MODEL) for more details. ### 5. Contact If you have any questions, please raise an issue or contact us at [service@deepseek.com](mailto:service@deepseek.com).