Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) natural-sql-7b - bnb 4bits - Model creator: https://huggingface.co/chatdb/ - Original model: https://huggingface.co/chatdb/natural-sql-7b/ Original model description: --- base_model: deepseek-ai/deepseek-coder-6.7b-instruct tags: - instruct - finetune library_name: transformers license: cc-by-sa-4.0 pipeline_tag: text-generation --- # **Natural-SQL-7B by ChatDB** ## Natural-SQL-7B is a model with very strong performance in Text-to-SQL instructions, has an excellent understanding of complex questions, and outperforms models of the same size in its space. [ChatDB.ai](https://chatdb.ai) | [Notebook](https://github.com/cfahlgren1/natural-sql/blob/main/natural-sql-7b.ipynb) | [Twitter](https://twitter.com/calebfahlgren) # **Benchmarks** ### *Results on Novel Datasets not trained on via SQL-Eval* Big thanks to the [defog](https://huggingface.co/defog) team for open sourcing [sql-eval](https://github.com/defog-ai/sql-eval)👏 Natural-SQL also can handle complex, compound questions that other models typically struggle with. There is a more detailed writeup Here is a write up, small test done [here](https://chatdb.ai/post/naturalsql-vs-sqlcoder-for-text-to-sql). # Usage Make sure you have the correct version of the transformers library installed: ```sh pip install transformers==4.35.2 ``` ### Loading the Model Use the following Python code to load the model: ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("chatdb/natural-sql-7b") model = AutoModelForCausalLM.from_pretrained( "chatdb/natural-sql-7b", device_map="auto", torch_dtype=torch.float16, ) ``` ### **License** The model weights are licensed under `CC BY-SA 4.0`, with extra guidelines for responsible use expanded from the original model's [Deepseek](https://github.com/deepseek-ai/deepseek-coder/blob/main/LICENSE-MODEL) license. You're free to use and adapt the model, even commercially. If you alter the weights, such as through fine-tuning, you must publicly share your changes under the same `CC BY-SA 4.0` license. ### Generating SQL ```python inputs = tokenizer(prompt, return_tensors="pt").to("cuda") generated_ids = model.generate( **inputs, num_return_sequences=1, eos_token_id=100001, pad_token_id=100001, max_new_tokens=400, do_sample=False, num_beams=1, ) outputs = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) print(outputs[0].split("```sql")[-1]) ``` # Prompt Template ``` # Task Generate a SQL query to answer the following question: `{natural language question}` ### PostgreSQL Database Schema The query will run on a database with the following schema: # SQL Here is the SQL query that answers the question: `{natural language question}` '''sql ``` # Example SQL Output ### Example Schemas ```sql CREATE TABLE users ( user_id SERIAL PRIMARY KEY, username VARCHAR(50) NOT NULL, email VARCHAR(100) NOT NULL, password_hash TEXT NOT NULL, created_at TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ); CREATE TABLE projects ( project_id SERIAL PRIMARY KEY, project_name VARCHAR(100) NOT NULL, description TEXT, start_date DATE, end_date DATE, owner_id INTEGER REFERENCES users(user_id) ); CREATE TABLE tasks ( task_id SERIAL PRIMARY KEY, task_name VARCHAR(100) NOT NULL, description TEXT, due_date DATE, status VARCHAR(50), project_id INTEGER REFERENCES projects(project_id) ); CREATE TABLE taskassignments ( assignment_id SERIAL PRIMARY KEY, task_id INTEGER REFERENCES tasks(task_id), user_id INTEGER REFERENCES users(user_id), assigned_date DATE NOT NULL DEFAULT CURRENT_TIMESTAMP ); CREATE TABLE comments ( comment_id SERIAL PRIMARY KEY, content TEXT NOT NULL, created_at TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP, task_id INTEGER REFERENCES tasks(task_id), user_id INTEGER REFERENCES users(user_id) ); ``` ### Example SQL Outputs **Question**: **Show me the day with the most users joining** ```sql SELECT created_at::DATE AS day, COUNT(*) AS user_count FROM users GROUP BY day ORDER BY user_count DESC LIMIT 1; ``` **Question**: **Show me the project that has a task with the most comments** ```sql SELECT p.project_name, t.task_name, COUNT(c.comment_id) AS comment_count FROM projects p JOIN tasks t ON p.project_id = t.project_id JOIN comments c ON t.task_id = c.task_id GROUP BY p.project_name, t.task_name ORDER BY comment_count DESC LIMIT 1; ``` **Question**: **What is the ratio of users with gmail addresses vs without?** ```sql SELECT SUM(CASE WHEN email ILIKE '%@gmail.com%' THEN 1 ELSE 0 END)::FLOAT / NULLIF(SUM(CASE WHEN email NOT ILIKE '%@gmail.com%' THEN 1 ELSE 0 END), 0) AS gmail_ratio FROM users; ```