Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
natural-sql-7b - bnb 4bits
- Model creator: https://huggingface.co/chatdb/
- Original model: https://huggingface.co/chatdb/natural-sql-7b/
Original model description:
---
base_model: deepseek-ai/deepseek-coder-6.7b-instruct
tags:
- instruct
- finetune
library_name: transformers
license: cc-by-sa-4.0
pipeline_tag: text-generation
---
# **Natural-SQL-7B by ChatDB**
## Natural-SQL-7B is a model with very strong performance in Text-to-SQL instructions, has an excellent understanding of complex questions, and outperforms models of the same size in its space.
[ChatDB.ai](https://chatdb.ai) | [Notebook](https://github.com/cfahlgren1/natural-sql/blob/main/natural-sql-7b.ipynb) | [Twitter](https://twitter.com/calebfahlgren)
# **Benchmarks**
### *Results on Novel Datasets not trained on via SQL-Eval*
Big thanks to the [defog](https://huggingface.co/defog) team for open sourcing [sql-eval](https://github.com/defog-ai/sql-eval)👏
Natural-SQL also can handle complex, compound questions that other models typically struggle with. There is a more detailed writeup Here is a write up, small test done [here](https://chatdb.ai/post/naturalsql-vs-sqlcoder-for-text-to-sql).
# Usage
Make sure you have the correct version of the transformers library installed:
```sh
pip install transformers==4.35.2
```
### Loading the Model
Use the following Python code to load the model:
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("chatdb/natural-sql-7b")
model = AutoModelForCausalLM.from_pretrained(
"chatdb/natural-sql-7b",
device_map="auto",
torch_dtype=torch.float16,
)
```
### **License**
The model weights are licensed under `CC BY-SA 4.0`, with extra guidelines for responsible use expanded from the original model's [Deepseek](https://github.com/deepseek-ai/deepseek-coder/blob/main/LICENSE-MODEL) license.
You're free to use and adapt the model, even commercially.
If you alter the weights, such as through fine-tuning, you must publicly share your changes under the same `CC BY-SA 4.0` license.
### Generating SQL
```python
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
generated_ids = model.generate(
**inputs,
num_return_sequences=1,
eos_token_id=100001,
pad_token_id=100001,
max_new_tokens=400,
do_sample=False,
num_beams=1,
)
outputs = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
print(outputs[0].split("```sql")[-1])
```
# Prompt Template
```
# Task
Generate a SQL query to answer the following question: `{natural language question}`
### PostgreSQL Database Schema
The query will run on a database with the following schema:
# SQL
Here is the SQL query that answers the question: `{natural language question}`
'''sql
```
# Example SQL Output
### Example Schemas
```sql
CREATE TABLE users (
user_id SERIAL PRIMARY KEY,
username VARCHAR(50) NOT NULL,
email VARCHAR(100) NOT NULL,
password_hash TEXT NOT NULL,
created_at TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP
);
CREATE TABLE projects (
project_id SERIAL PRIMARY KEY,
project_name VARCHAR(100) NOT NULL,
description TEXT,
start_date DATE,
end_date DATE,
owner_id INTEGER REFERENCES users(user_id)
);
CREATE TABLE tasks (
task_id SERIAL PRIMARY KEY,
task_name VARCHAR(100) NOT NULL,
description TEXT,
due_date DATE,
status VARCHAR(50),
project_id INTEGER REFERENCES projects(project_id)
);
CREATE TABLE taskassignments (
assignment_id SERIAL PRIMARY KEY,
task_id INTEGER REFERENCES tasks(task_id),
user_id INTEGER REFERENCES users(user_id),
assigned_date DATE NOT NULL DEFAULT CURRENT_TIMESTAMP
);
CREATE TABLE comments (
comment_id SERIAL PRIMARY KEY,
content TEXT NOT NULL,
created_at TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
task_id INTEGER REFERENCES tasks(task_id),
user_id INTEGER REFERENCES users(user_id)
);
```
### Example SQL Outputs
**Question**: **Show me the day with the most users joining**
```sql
SELECT created_at::DATE AS day, COUNT(*) AS user_count
FROM users
GROUP BY day
ORDER BY user_count DESC
LIMIT 1;
```
**Question**: **Show me the project that has a task with the most comments**
```sql
SELECT p.project_name, t.task_name, COUNT(c.comment_id) AS comment_count
FROM projects p
JOIN tasks t ON p.project_id = t.project_id
JOIN comments c ON t.task_id = c.task_id
GROUP BY p.project_name, t.task_name
ORDER BY comment_count DESC
LIMIT 1;
```
**Question**: **What is the ratio of users with gmail addresses vs without?**
```sql
SELECT
SUM(CASE WHEN email ILIKE '%@gmail.com%' THEN 1 ELSE 0 END)::FLOAT / NULLIF(SUM(CASE WHEN email NOT ILIKE '%@gmail.com%' THEN 1 ELSE 0 END), 0) AS gmail_ratio
FROM
users;
```