Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) bloom-3b - bnb 4bits - Model creator: https://huggingface.co/bigscience/ - Original model: https://huggingface.co/bigscience/bloom-3b/ Original model description: --- license: bigscience-bloom-rail-1.0 language: - ak - ar - as - bm - bn - ca - code - en - es - eu - fon - fr - gu - hi - id - ig - ki - kn - lg - ln - ml - mr - ne - nso - ny - or - pa - pt - rn - rw - sn - st - sw - ta - te - tn - ts - tum - tw - ur - vi - wo - xh - yo - zh - zhs - zht - zu pipeline_tag: text-generation model-index: - name: bloom results: - task: type: text-generation name: text generation dataset: name: arc_challenge type: arc_challenge metrics: - name: acc type: acc value: 0.27986348122866894 verified: false - task: type: text-generation name: text generation dataset: name: arc_easy type: arc_easy metrics: - name: acc type: acc value: 0.5946969696969697 verified: false - task: type: text-generation name: text generation dataset: name: axb type: axb metrics: - name: acc type: acc value: 0.4433876811594203 verified: false - task: type: text-generation name: text generation dataset: name: axg type: axg metrics: - name: acc type: acc value: 0.5 verified: false - task: type: text-generation name: text generation dataset: name: boolq type: boolq metrics: - name: acc type: acc value: 0.6165137614678899 verified: false - task: type: text-generation name: text generation dataset: name: cb type: cb metrics: - name: acc type: acc value: 0.30357142857142855 verified: false - task: type: text-generation name: text generation dataset: name: cola type: cola metrics: - name: acc type: acc value: 0.610738255033557 verified: false - task: type: text-generation name: text generation dataset: name: copa type: copa metrics: - name: acc type: acc value: 0.63 verified: false - task: type: text-generation name: text generation dataset: name: crows_pairs_english type: crows_pairs_english metrics: - name: acc type: acc value: 0.4973166368515206 verified: false - task: type: text-generation name: text generation dataset: name: crows_pairs_french type: crows_pairs_french metrics: - name: acc type: acc value: 0.5032796660703638 verified: false - task: type: text-generation name: text generation dataset: name: diabla type: diabla metrics: - name: acc type: acc value: 0.28888308977035493 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_afr type: gsarti/flores_101_afr metrics: - name: byte_perplexity type: byte_perplexity value: 6.500798737976343 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_amh type: gsarti/flores_101_amh metrics: - name: byte_perplexity type: byte_perplexity value: 3.9726863338897145 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_ara type: gsarti/flores_101_ara metrics: - name: byte_perplexity type: byte_perplexity value: 1.8083841089875814 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_asm type: gsarti/flores_101_asm metrics: - name: byte_perplexity type: byte_perplexity value: 5.699102962086425 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_ast type: gsarti/flores_101_ast metrics: - name: byte_perplexity type: byte_perplexity value: 3.9252047073429384 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_azj type: gsarti/flores_101_azj metrics: - name: byte_perplexity type: byte_perplexity value: 6.942805054270002 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_bel type: gsarti/flores_101_bel metrics: - name: byte_perplexity type: byte_perplexity value: 3.614136245847082 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_ben type: gsarti/flores_101_ben metrics: - name: byte_perplexity type: byte_perplexity value: 5.121491534300969 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_bos type: gsarti/flores_101_bos metrics: - name: byte_perplexity type: byte_perplexity value: 5.653353469118798 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_bul type: gsarti/flores_101_bul metrics: - name: byte_perplexity type: byte_perplexity value: 2.7014693938055068 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_cat type: gsarti/flores_101_cat metrics: - name: byte_perplexity type: byte_perplexity value: 2.305190041967345 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_ceb type: gsarti/flores_101_ceb metrics: - name: byte_perplexity type: byte_perplexity value: 6.291000321323428 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_ces type: gsarti/flores_101_ces metrics: - name: byte_perplexity type: byte_perplexity value: 5.447322753586386 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_ckb type: gsarti/flores_101_ckb metrics: - name: byte_perplexity type: byte_perplexity value: 3.7255124939234765 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_cym type: gsarti/flores_101_cym metrics: - name: byte_perplexity type: byte_perplexity value: 12.539424151448149 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_dan type: gsarti/flores_101_dan metrics: - name: byte_perplexity type: byte_perplexity value: 5.183309001005672 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_deu type: gsarti/flores_101_deu metrics: - name: byte_perplexity type: byte_perplexity value: 3.1180422286591347 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_ell type: gsarti/flores_101_ell metrics: - name: byte_perplexity type: byte_perplexity value: 2.467943456164706 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_eng type: gsarti/flores_101_eng metrics: - name: byte_perplexity type: byte_perplexity value: 2.018740628193298 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_est type: gsarti/flores_101_est metrics: - name: byte_perplexity type: byte_perplexity value: 9.11654425176368 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_fas type: gsarti/flores_101_fas metrics: - name: byte_perplexity type: byte_perplexity value: 3.058009097116482 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_fin type: gsarti/flores_101_fin metrics: - name: byte_perplexity type: byte_perplexity value: 6.847047959628553 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_fra type: gsarti/flores_101_fra metrics: - name: byte_perplexity type: byte_perplexity value: 1.9975177011840075 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_ful type: gsarti/flores_101_ful metrics: - name: byte_perplexity type: byte_perplexity value: 11.465912731488828 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_gle type: gsarti/flores_101_gle metrics: - name: byte_perplexity type: byte_perplexity value: 8.681491663539422 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_glg type: gsarti/flores_101_glg metrics: - name: byte_perplexity type: byte_perplexity value: 3.029991089015508 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_guj type: gsarti/flores_101_guj metrics: - name: byte_perplexity type: byte_perplexity value: 4.955224230286231 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_hau type: gsarti/flores_101_hau metrics: - name: byte_perplexity type: byte_perplexity value: 10.758347356372159 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_heb type: gsarti/flores_101_heb metrics: - name: byte_perplexity type: byte_perplexity value: 3.6004478129801667 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_hin type: gsarti/flores_101_hin metrics: - name: byte_perplexity type: byte_perplexity value: 4.712530650588064 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_hrv type: gsarti/flores_101_hrv metrics: - name: byte_perplexity type: byte_perplexity value: 5.822418943372185 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_hun type: gsarti/flores_101_hun metrics: - name: byte_perplexity type: byte_perplexity value: 6.440482646965992 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_hye type: gsarti/flores_101_hye metrics: - name: byte_perplexity type: byte_perplexity value: 3.657718918347166 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_ibo type: gsarti/flores_101_ibo metrics: - name: byte_perplexity type: byte_perplexity value: 5.564814003872672 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_ind type: gsarti/flores_101_ind metrics: - name: byte_perplexity type: byte_perplexity value: 2.1597101468869373 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_isl type: gsarti/flores_101_isl metrics: - name: byte_perplexity type: byte_perplexity value: 8.082349269518136 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_ita type: gsarti/flores_101_ita metrics: - name: byte_perplexity type: byte_perplexity value: 2.9687591414176207 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_jav type: gsarti/flores_101_jav metrics: - name: byte_perplexity type: byte_perplexity value: 7.0573805415708994 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_jpn type: gsarti/flores_101_jpn metrics: - name: byte_perplexity type: byte_perplexity value: 2.7758864197116933 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_kam type: gsarti/flores_101_kam metrics: - name: byte_perplexity type: byte_perplexity value: 11.072949642861332 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_kan type: gsarti/flores_101_kan metrics: - name: byte_perplexity type: byte_perplexity value: 5.551730651007082 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_kat type: gsarti/flores_101_kat metrics: - name: byte_perplexity type: byte_perplexity value: 2.522630524283745 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_kaz type: gsarti/flores_101_kaz metrics: - name: byte_perplexity type: byte_perplexity value: 3.3901748516975574 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_kea type: gsarti/flores_101_kea metrics: - name: byte_perplexity type: byte_perplexity value: 8.918534182590863 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_kir type: gsarti/flores_101_kir metrics: - name: byte_perplexity type: byte_perplexity value: 3.729278369847201 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_kor type: gsarti/flores_101_kor metrics: - name: byte_perplexity type: byte_perplexity value: 3.932884847226212 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_lao type: gsarti/flores_101_lao metrics: - name: byte_perplexity type: byte_perplexity value: 2.9077314760849924 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_lav type: gsarti/flores_101_lav metrics: - name: byte_perplexity type: byte_perplexity value: 7.777221919194806 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_lin type: gsarti/flores_101_lin metrics: - name: byte_perplexity type: byte_perplexity value: 7.524842908050988 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_lit type: gsarti/flores_101_lit metrics: - name: byte_perplexity type: byte_perplexity value: 7.369179434621725 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_ltz type: gsarti/flores_101_ltz metrics: - name: byte_perplexity type: byte_perplexity value: 8.801059747949214 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_lug type: gsarti/flores_101_lug metrics: - name: byte_perplexity type: byte_perplexity value: 8.483203026364786 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_luo type: gsarti/flores_101_luo metrics: - name: byte_perplexity type: byte_perplexity value: 11.975963093623681 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_mal type: gsarti/flores_101_mal metrics: - name: byte_perplexity type: byte_perplexity value: 4.615948455160037 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_mar type: gsarti/flores_101_mar metrics: - name: byte_perplexity type: byte_perplexity value: 5.483253482821379 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_mkd type: gsarti/flores_101_mkd metrics: - name: byte_perplexity type: byte_perplexity value: 2.9656732291754087 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_mlt type: gsarti/flores_101_mlt metrics: - name: byte_perplexity type: byte_perplexity value: 15.004773437665275 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_mon type: gsarti/flores_101_mon metrics: - name: byte_perplexity type: byte_perplexity value: 3.410598542315402 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_mri type: gsarti/flores_101_mri metrics: - name: byte_perplexity type: byte_perplexity value: 7.474035895661322 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_msa type: gsarti/flores_101_msa metrics: - name: byte_perplexity type: byte_perplexity value: 2.5710001772665634 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_mya type: gsarti/flores_101_mya metrics: - name: byte_perplexity type: byte_perplexity value: 2.413577969878331 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_nld type: gsarti/flores_101_nld metrics: - name: byte_perplexity type: byte_perplexity value: 4.127831721885065 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_nob type: gsarti/flores_101_nob metrics: - name: byte_perplexity type: byte_perplexity value: 5.402763169129877 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_npi type: gsarti/flores_101_npi metrics: - name: byte_perplexity type: byte_perplexity value: 5.199342701937889 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_nso type: gsarti/flores_101_nso metrics: - name: byte_perplexity type: byte_perplexity value: 8.154626800955667 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_nya type: gsarti/flores_101_nya metrics: - name: byte_perplexity type: byte_perplexity value: 8.179860208369393 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_oci type: gsarti/flores_101_oci metrics: - name: byte_perplexity type: byte_perplexity value: 4.8617357393685845 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_orm type: gsarti/flores_101_orm metrics: - name: byte_perplexity type: byte_perplexity value: 12.911595421079408 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_ory type: gsarti/flores_101_ory metrics: - name: byte_perplexity type: byte_perplexity value: 5.189421861225964 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_pan type: gsarti/flores_101_pan metrics: - name: byte_perplexity type: byte_perplexity value: 4.698477289331806 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_pol type: gsarti/flores_101_pol metrics: - name: byte_perplexity type: byte_perplexity value: 4.625550458479643 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_por type: gsarti/flores_101_por metrics: - name: byte_perplexity type: byte_perplexity value: 1.9754515986213523 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_pus type: gsarti/flores_101_pus metrics: - name: byte_perplexity type: byte_perplexity value: 4.4963371422771585 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_ron type: gsarti/flores_101_ron metrics: - name: byte_perplexity type: byte_perplexity value: 4.965456830031304 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_rus type: gsarti/flores_101_rus metrics: - name: byte_perplexity type: byte_perplexity value: 2.0498020542445303 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_slk type: gsarti/flores_101_slk metrics: - name: byte_perplexity type: byte_perplexity value: 6.450822127057479 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_slv type: gsarti/flores_101_slv metrics: - name: byte_perplexity type: byte_perplexity value: 6.620252120186232 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_sna type: gsarti/flores_101_sna metrics: - name: byte_perplexity type: byte_perplexity value: 8.462166771382726 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_snd type: gsarti/flores_101_snd metrics: - name: byte_perplexity type: byte_perplexity value: 5.466066951221973 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_som type: gsarti/flores_101_som metrics: - name: byte_perplexity type: byte_perplexity value: 11.95918054093392 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_spa type: gsarti/flores_101_spa metrics: - name: byte_perplexity type: byte_perplexity value: 1.8965140104323535 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_srp type: gsarti/flores_101_srp metrics: - name: byte_perplexity type: byte_perplexity value: 2.871214785885079 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_swe type: gsarti/flores_101_swe metrics: - name: byte_perplexity type: byte_perplexity value: 5.054972008155866 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_swh type: gsarti/flores_101_swh metrics: - name: byte_perplexity type: byte_perplexity value: 3.6973091886730676 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_tam type: gsarti/flores_101_tam metrics: - name: byte_perplexity type: byte_perplexity value: 4.539493400469833 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_tel type: gsarti/flores_101_tel metrics: - name: byte_perplexity type: byte_perplexity value: 5.807499987508966 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_tgk type: gsarti/flores_101_tgk metrics: - name: byte_perplexity type: byte_perplexity value: 3.5994818827380426 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_tgl type: gsarti/flores_101_tgl metrics: - name: byte_perplexity type: byte_perplexity value: 5.667053833119858 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_tha type: gsarti/flores_101_tha metrics: - name: byte_perplexity type: byte_perplexity value: 2.365940201944242 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_tur type: gsarti/flores_101_tur metrics: - name: byte_perplexity type: byte_perplexity value: 4.885014749844601 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_ukr type: gsarti/flores_101_ukr metrics: - name: byte_perplexity type: byte_perplexity value: 2.7240934990288483 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_umb type: gsarti/flores_101_umb metrics: - name: byte_perplexity type: byte_perplexity value: 12.766915508610673 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_urd type: gsarti/flores_101_urd metrics: - name: byte_perplexity type: byte_perplexity value: 1.9797467071381232 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_uzb type: gsarti/flores_101_uzb metrics: - name: byte_perplexity type: byte_perplexity value: 12.002337637722146 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_vie type: gsarti/flores_101_vie metrics: - name: byte_perplexity type: byte_perplexity value: 1.76578415476397 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_wol type: gsarti/flores_101_wol metrics: - name: byte_perplexity type: byte_perplexity value: 9.144285650306488 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_xho type: gsarti/flores_101_xho metrics: - name: byte_perplexity type: byte_perplexity value: 7.403240538286952 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_yor type: gsarti/flores_101_yor metrics: - name: byte_perplexity type: byte_perplexity value: 5.91272037551173 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_zho_simpl type: gsarti/flores_101_zho_simpl metrics: - name: byte_perplexity type: byte_perplexity value: 2.2769070822768533 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_zho_trad type: gsarti/flores_101_zho_trad metrics: - name: byte_perplexity type: byte_perplexity value: 2.5180582198242383 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_zul type: gsarti/flores_101_zul metrics: - name: byte_perplexity type: byte_perplexity value: 8.53353320693145 verified: false - task: type: text-generation name: text generation dataset: name: headqa type: headqa metrics: - name: acc type: acc value: 0.26440554339897887 verified: false - task: type: text-generation name: text generation dataset: name: hellaswag type: hellaswag metrics: - name: acc type: acc value: 0.41236805417247563 verified: false - task: type: text-generation name: text generation dataset: name: logiqa type: logiqa metrics: - name: acc type: acc value: 0.2073732718894009 verified: false - task: type: text-generation name: text generation dataset: name: mathqa type: mathqa metrics: - name: acc type: acc value: 0.24958123953098826 verified: false - task: type: text-generation name: text generation dataset: name: mc_taco type: mc_taco metrics: - name: em type: em value: 0.11936936936936937 verified: false - task: type: text-generation name: text generation dataset: name: mnli type: mnli metrics: - name: acc type: acc value: 0.35496688741721855 verified: false - task: type: text-generation name: text generation dataset: name: mnli_mismatched type: mnli_mismatched metrics: - name: acc type: acc value: 0.35211554109031734 verified: false - task: type: text-generation name: text generation dataset: name: mrpc type: mrpc metrics: - name: acc type: acc value: 0.5857843137254902 verified: false - task: type: text-generation name: text generation dataset: name: multirc type: multirc metrics: - name: acc type: acc value: 0.5375412541254125 verified: false - task: type: text-generation name: text generation dataset: name: openbookqa type: openbookqa metrics: - name: acc type: acc value: 0.216 verified: false - task: type: text-generation name: text generation dataset: name: piqa type: piqa metrics: - name: acc type: acc value: 0.7078346028291621 verified: false - task: type: text-generation name: text generation dataset: name: prost type: prost metrics: - name: acc type: acc value: 0.22683603757472245 verified: false - task: type: text-generation name: text generation dataset: name: pubmedqa type: pubmedqa metrics: - name: acc type: acc value: 0.616 verified: false - task: type: text-generation name: text generation dataset: name: qnli type: qnli metrics: - name: acc type: acc value: 0.5072304594545122 verified: false - task: type: text-generation name: text generation dataset: name: qqp type: qqp metrics: - name: acc type: acc value: 0.3842443729903537 verified: false - task: type: text-generation name: text generation dataset: name: race type: race metrics: - name: acc type: acc value: 0.3521531100478469 verified: false - task: type: text-generation name: text generation dataset: name: rte type: rte metrics: - name: acc type: acc value: 0.47653429602888087 verified: false - task: type: text-generation name: text generation dataset: name: sciq type: sciq metrics: - name: acc type: acc value: 0.892 verified: false - task: type: text-generation name: text generation dataset: name: sst type: sst metrics: - name: acc type: acc value: 0.5177752293577982 verified: false - task: type: text-generation name: text generation dataset: name: triviaqa type: triviaqa metrics: - name: acc type: acc value: 0.041633518960487934 verified: false - task: type: text-generation name: text generation dataset: name: tydiqa_primary type: tydiqa_primary metrics: - name: acc type: acc value: 0.3011337608795236 verified: false - task: type: text-generation name: text generation dataset: name: webqs type: webqs metrics: - name: acc type: acc value: 0.01673228346456693 verified: false - task: type: text-generation name: text generation dataset: name: wic type: wic metrics: - name: acc type: acc value: 0.5015673981191222 verified: false - task: type: text-generation name: text generation dataset: name: winogrande type: winogrande metrics: - name: acc type: acc value: 0.5864246250986582 verified: false - task: type: text-generation name: text generation dataset: name: wnli type: wnli metrics: - name: acc type: acc value: 0.471830985915493 verified: false - task: type: text-generation name: text generation dataset: name: wsc type: wsc metrics: - name: acc type: acc value: 0.4423076923076923 verified: false - task: type: text-generation name: text generation dataset: name: humaneval type: humaneval metrics: - name: pass@1 type: pass@1 value: 0.15524390243902436 verified: false - name: pass@10 type: pass@10 value: 0.3220367632383857 verified: false - name: pass@100 type: pass@100 value: 0.5545431515723145 verified: false ---

BLOOM LM

BigScience Large Open-science Open-access Multilingual Language Model

Model Card

BigScience Logo Version 1.0 / 26.May.2022 ## Table of Contents 1. [Model Details](#model-details) 2. [Uses](#uses) 3. [Training Data](#training-data) 4. [Risks and Limitations](#risks-and-limitations) 5. [Evaluation](#evaluation) 6. [Recommendations](#recommendations) 7. [Glossary and Calculations](#glossary-and-calculations) 8. [More Information](#more-information) 9. [Model Card Authors](#model-card-authors) ## Model Details ### Basics *This section provides information for anyone who wants to know about the model.*
Click to expand
**Developed by:** BigScience ([website](https://bigscience.huggingface.co)) * All collaborators are either volunteers or have an agreement with their employer. *(Further breakdown of participants forthcoming.)* **Model Type:** Transformer-based Language Model **Version:** 1.0.0 **Languages:** Multiple; see [training data](#training-data) **License:** RAIL License v1.0 ([link](https://huggingface.co/spaces/bigscience/license)) **Release Date Estimate:** Monday, 11.July.2022 **Send Questions to:** bigscience-contact@googlegroups.com **Cite as:** BigScience, _BigScience Language Open-science Open-access Multilingual (BLOOM) Language Model_. International, May 2021-May 2022 **Funded by:** * The French government. * Hugging Face ([website](https://huggingface.co)). * Organizations of contributors. *(Further breakdown of organizations forthcoming.)*
### Technical Specifications *This section provides information for people who work on model development.*
Click to expand
Please see [the BLOOM training README](https://github.com/bigscience-workshop/bigscience/tree/master/train/tr11-176B-ml#readme) for full details on replicating training. **Model Architecture:** Modified from Megatron-LM GPT2 (see [paper](https://arxiv.org/abs/1909.08053), [BLOOM Megatron code](https://github.com/bigscience-workshop/Megatron-DeepSpeed)): * Decoder-only architecture * Layer normalization applied to word embeddings layer (`StableEmbedding`; see [code](https://github.com/facebookresearch/bitsandbytes), [paper](https://arxiv.org/pdf/2110.02861.pdf)) * ALiBI positional encodings (see [paper](https://arxiv.org/pdf/2108.12409.pdf)), with GeLU activation functions * 3,002,557,440 parameters: * 642,252,800 embedding parameters * 30 layers, 32 attention heads * Hidden layers are 2560-dimensional * Sequence length of 2048 tokens used (see [BLOOM tokenizer](https://huggingface.co/bigscience/tokenizer), [tokenizer description](#tokenization)) **Objective Function:** Cross Entropy with mean reduction (see [API documentation](https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html#torch.nn.CrossEntropyLoss)). **Compute infrastructure:** Jean Zay Public Supercomputer, provided by the French government (see [announcement](https://www.enseignementsup-recherche.gouv.fr/fr/signature-du-marche-d-acquisition-de-l-un-des-supercalculateurs-les-plus-puissants-d-europe-46733)). * Hardware: 384 A100 80GB GPUs (48 nodes): * Additional 32 A100 80GB GPUs (4 nodes) in reserve * 8 GPUs per node Using NVLink 4 inter-gpu connects, 4 OmniPath links * CPU: AMD * CPU memory: 512GB per node * GPU memory: 640GB per node * Inter-node connect: Omni-Path Architecture (OPA) * NCCL-communications network: a fully dedicated subnet * Disc IO network: shared network with other types of nodes * Software: * Megatron-DeepSpeed ([Github link](https://github.com/bigscience-workshop/Megatron-DeepSpeed)) * DeepSpeed ([Github link](https://github.com/microsoft/DeepSpeed)) * PyTorch (pytorch-1.11 w/ CUDA-11.5; see [Github link](https://github.com/pytorch/pytorch)) * apex ([Github link](https://github.com/NVIDIA/apex)) #### **Training** Training logs: [Tensorboard link](https://huggingface.co/tensorboard/bigscience/tr11c-2B5-logs) - Number of epochs: 1 (*current target*) - Dates: - Started 11th March, 2022 11:42am PST - Ended 5th July, 2022 - Estimated cost of training: Equivalent of $2-5M in cloud computing (including preliminary experiments) - Server training location: Île-de-France, France #### **Tokenization** The BLOOM tokenizer ([link](https://huggingface.co/bigscience/tokenizer)) is a learned subword tokenizer trained using: - A byte-level Byte Pair Encoding (BPE) algorithm - A simple pre-tokenization rule, no normalization - A vocabulary size of 250,680 It was trained on a subset of a preliminary version of the corpus using alpha-weighting per language.
### Environmental Impact
Click to expand
The training supercomputer, Jean Zay ([website](http://www.idris.fr/eng/jean-zay/jean-zay-presentation-eng.html)), uses mostly nuclear energy. The heat generated by it is reused for heating campus housing. **Estimated carbon emissions:** *(Forthcoming upon completion of training.)* **Estimated electricity usage:** *(Forthcoming upon completion of training.)*

 

## Uses *This section addresses questions around how the model is intended to be used, discusses the foreseeable users of the model (including those affected by the model), and describes uses that are considered out of scope or misuse of the model. It provides information for anyone considering using the model or who is affected by the model.*
Click to expand
### Intended Use This model is being created in order to enable public research on large language models (LLMs). LLMs are intended to be used for language generation or as a pretrained base model that can be further fine-tuned for specific tasks. Use cases below are not exhaustive. #### **Direct Use** - Text generation - Exploring characteristics of language generated by a language model - Examples: Cloze tests, counterfactuals, generations with reframings #### **Downstream Use** - Tasks that leverage language models include: Information Extraction, Question Answering, Summarization ### Misuse and Out-of-scope Use *This section addresses what users ought not do with the model.* See the [BLOOM License](https://huggingface.co/spaces/bigscience/license), Attachment A, for detailed usage restrictions. The below list is non-exhaustive, but lists some easily foreseeable problematic use cases. #### **Out-of-scope Uses** Using the model in [high-stakes](#high-stakes) settings is out of scope for this model.  The model is not designed for [critical decisions](#critical-decisions) nor uses with any material consequences on an individual's livelihood or wellbeing. The model outputs content that appears factual but is not correct. ##### Out-of-scope Uses Include: - Usage in biomedical domains, political and legal domains, or finance domains - Usage for evaluating or scoring individuals, such as for employment, education, or credit - Applying the model for critical automatic decisions, generating factual content, creating reliable summaries, or generating predictions that must be correct #### **Misuse** Intentionally using the model for harm, violating [human rights](#human-rights), or other kinds of malicious activities, is a misuse of this model. This includes: - Spam generation - Disinformation and influence operations - Disparagement and defamation - Harassment and abuse - [Deception](#deception) - Unconsented impersonation and imitation - Unconsented surveillance - Generating content without attribution to the model, as specified in the [RAIL License, Use Restrictions](https://huggingface.co/spaces/bigscience/license) ### Intended Users #### **Direct Users** - General Public - Researchers - Students - Educators - Engineers/developers - Non-commercial entities - Community advocates, including human and civil rights groups #### Indirect Users - Users of derivatives created by Direct Users, such as those using software with an [intended use](#intended-use) - Users of [Derivatives of the Model, as described in the License](https://huggingface.co/spaces/bigscience/license) #### Others Affected (Parties Prenantes) - People and groups referred to by the LLM - People and groups exposed to outputs of, or decisions based on, the LLM - People and groups whose original work is included in the LLM

 

## Training Data *This section provides a high-level overview of the training data. It is relevant for anyone who wants to know the basics of what the model is learning.*
Click to expand
Details for each dataset are provided in individual [Data Cards](https://huggingface.co/spaces/bigscience/BigScienceCorpus). Training data includes: - 45 natural languages - 12 programming languages - In 1.5TB of pre-processed text, converted into 350B unique tokens (see [the tokenizer section](#tokenization) for more.) #### **Languages** The pie chart shows the distribution of languages in training data. ![pie chart showing the distribution of languages in training data](https://github.com/bigscience-workshop/model_card/blob/main/assets/data/pie_chart.svg?raw=true) The following table shows the further distribution of Niger-Congo and Indic languages in the training data.
Click to expand
| Niger Congo | Percentage | | Indic | Percentage | |----------------|------------ |------ |-----------|------------| | Chi Tumbuka | 0.00002 | | Assamese | 0.01 | | Kikuyu | 0.00004 | | Odia | 0.04 | | Bambara | 0.00004 | | Gujarati | 0.04 | | Akan | 0.00007 | | Marathi | 0.05 | | Xitsonga | 0.00007 | | Punjabi | 0.05 | | Sesotho | 0.00007 | | Kannada | 0.06 | | Chi Chewa | 0.0001 | | Nepali | 0.07 | | Setswana | 0.0002 | | Telugu | 0.09 | | Northern Sotho | 0.0002 | | Malayalam | 0.10 | | Fon | 0.0002 | | Urdu | 0.10 | | Kirundi | 0.0003 | | Tamil | 0.20 | | Wolof | 0.0004 | | Bengali | 0.50 | | Kuganda | 0.0004 | | Hindi | 0.70 | | Chi Shona | 0.001 | | Isi Zulu | 0.001 | | Igbo | 0.001 | | Xhosa | 0.001 | | Kinyarwanda | 0.003 | | Yoruba | 0.006 | | Swahili | 0.02 |
The following table shows the distribution of programming languages.
Click to expand
| Extension | Language | Number of files | |----------------|------------|-----------------| | java | Java | 5,407,724 | | php | PHP | 4,942,186 | | cpp | C++ | 2,503,930 | | py | Python | 2,435,072 | | js | JavaScript | 1,905,518 | | cs | C# | 1,577,347 | | rb | Ruby | 6,78,413 | | cc | C++ | 443,054 | | hpp | C++ | 391,048 | | lua | Lua | 352,317 | | go | GO | 227,763 | | ts | TypeScript | 195,254 | | C | C | 134,537 | | scala | Scala | 92,052 | | hh | C++ | 67,161 | | H | C++ | 55,899 | | tsx | TypeScript | 33,107 | | rs | Rust | 29,693 | | phpt | PHP | 9,702 | | c++ | C++ | 1,342 | | h++ | C++ | 791 | | php3 | PHP | 540 | | phps | PHP | 270 | | php5 | PHP | 166 | | php4 | PHP | 29 |

 

## Risks and Limitations *This section identifies foreseeable harms and misunderstandings.*
Click to expand
Model may: - Overrepresent some viewpoints and underrepresent others - Contain stereotypes - Contain [personal information](#personal-data-and-information) - Generate: - Hateful, abusive, or violent language - Discriminatory or prejudicial language - Content that may not be appropriate for all settings, including sexual content - Make errors, including producing incorrect information as if it were factual - Generate irrelevant or repetitive outputs

 

## Evaluation *This section describes the evaluation protocols and provides the results.*
Click to expand
### Metrics *This section describes the different ways performance is calculated and why.* Includes: | Metric | Why chosen | |--------------------|--------------------------------------------------------------------| | [Perplexity](#perplexity) | Standard metric for quantifying model improvements during training | | Cross Entropy [Loss](#loss) | Standard objective for language models. | And multiple different metrics for specific tasks. _(More evaluation metrics forthcoming upon completion of evaluation protocol.)_ ### Factors *This section lists some different aspects of BLOOM models. Its focus is on aspects that are likely to give rise to high variance in model behavior.* - Language, such as English or Yoruba - Domain, such as newswire or stories - Demographic characteristics, such as gender or nationality ### Results *Results are based on the [Factors](#factors) and [Metrics](#metrics).* **Zero-shot evaluations:** See this repository for JSON files: https://github.com/bigscience-workshop/evaluation-results | Task | Language | Metric | BLOOM-2B5 | |:----|:----|:----|:----:| | arc_challenge | eng | acc ↑ | 0.28 | | arc_easy | eng | acc ↑ | 0.595 | | axb (Median of 10 prompts) | eng | acc ↑ | 0.443 | | axg (Median of 10 prompts) | eng | acc ↑ | 0.5 | | boolq (Median of 11 prompts) | eng | acc ↑ | 0.617 | | cb (Median of 15 prompts) | eng | acc ↑ | 0.304 | | cola (Median of 5 prompts) | eng | acc ↑ | 0.611 | | copa (Median of 9 prompts) | eng | acc ↑ | 0.63 | | crows_pairs_english (Median of 6 prompts) | eng | acc ↑ | 0.497 | | crows_pairs_french (Median of 7 prompts) | fra | acc ↑ | 0.503 | | diabla (Median of 2 prompts) | eng | acc ↑ | 0.289 | | gsarti/flores_101_afr | afr | byte_perplexity ↓ | 6.501 | | gsarti/flores_101_amh | amh | byte_perplexity ↓ | 3.973 | | gsarti/flores_101_ara | ara | byte_perplexity ↓ | 1.808 | | gsarti/flores_101_asm | asm | byte_perplexity ↓ | 5.699 | | gsarti/flores_101_ast | ast | byte_perplexity ↓ | 3.925 | | gsarti/flores_101_azj | azj | byte_perplexity ↓ | 6.943 | | gsarti/flores_101_bel | bel | byte_perplexity ↓ | 3.614 | | gsarti/flores_101_ben | ben | byte_perplexity ↓ | 5.121 | | gsarti/flores_101_bos | bos | byte_perplexity ↓ | 5.653 | | gsarti/flores_101_bul | bul | byte_perplexity ↓ | 2.701 | | gsarti/flores_101_cat | cat | byte_perplexity ↓ | 2.305 | | gsarti/flores_101_ceb | ceb | byte_perplexity ↓ | 6.291 | | gsarti/flores_101_ces | ces | byte_perplexity ↓ | 5.447 | | gsarti/flores_101_ckb | ckb | byte_perplexity ↓ | 3.726 | | gsarti/flores_101_cym | cym | byte_perplexity ↓ | 12.539 | | gsarti/flores_101_dan | dan | byte_perplexity ↓ | 5.183 | | gsarti/flores_101_deu | deu | byte_perplexity ↓ | 3.118 | | gsarti/flores_101_ell | ell | byte_perplexity ↓ | 2.468 | | gsarti/flores_101_eng | eng | byte_perplexity ↓ | 2.019 | | gsarti/flores_101_est | est | byte_perplexity ↓ | 9.117 | | gsarti/flores_101_fas | fas | byte_perplexity ↓ | 3.058 | | gsarti/flores_101_fin | fin | byte_perplexity ↓ | 6.847 | | gsarti/flores_101_fra | fra | byte_perplexity ↓ | 1.998 | | gsarti/flores_101_ful | ful | byte_perplexity ↓ | 11.466 | | gsarti/flores_101_gle | gle | byte_perplexity ↓ | 8.681 | | gsarti/flores_101_glg | glg | byte_perplexity ↓ | 3.03 | | gsarti/flores_101_guj | guj | byte_perplexity ↓ | 4.955 | | gsarti/flores_101_hau | hau | byte_perplexity ↓ | 10.758 | | gsarti/flores_101_heb | heb | byte_perplexity ↓ | 3.6 | | gsarti/flores_101_hin | hin | byte_perplexity ↓ | 4.713 | | gsarti/flores_101_hrv | hrv | byte_perplexity ↓ | 5.822 | | gsarti/flores_101_hun | hun | byte_perplexity ↓ | 6.44 | | gsarti/flores_101_hye | hye | byte_perplexity ↓ | 3.658 | | gsarti/flores_101_ibo | ibo | byte_perplexity ↓ | 5.565 | | gsarti/flores_101_ind | ind | byte_perplexity ↓ | 2.16 | | gsarti/flores_101_isl | isl | byte_perplexity ↓ | 8.082 | | gsarti/flores_101_ita | ita | byte_perplexity ↓ | 2.969 | | gsarti/flores_101_jav | jav | byte_perplexity ↓ | 7.057 | | gsarti/flores_101_jpn | jpn | byte_perplexity ↓ | 2.776 | | gsarti/flores_101_kam | kam | byte_perplexity ↓ | 11.073 | | gsarti/flores_101_kan | kan | byte_perplexity ↓ | 5.552 | | gsarti/flores_101_kat | kat | byte_perplexity ↓ | 2.523 | | gsarti/flores_101_kaz | kaz | byte_perplexity ↓ | 3.39 | | gsarti/flores_101_kea | kea | byte_perplexity ↓ | 8.919 | | gsarti/flores_101_kir | kir | byte_perplexity ↓ | 3.729 | | gsarti/flores_101_kor | kor | byte_perplexity ↓ | 3.933 | | gsarti/flores_101_lao | lao | byte_perplexity ↓ | 2.908 | | gsarti/flores_101_lav | lav | byte_perplexity ↓ | 7.777 | | gsarti/flores_101_lin | lin | byte_perplexity ↓ | 7.525 | | gsarti/flores_101_lit | lit | byte_perplexity ↓ | 7.369 | | gsarti/flores_101_ltz | ltz | byte_perplexity ↓ | 8.801 | | gsarti/flores_101_lug | lug | byte_perplexity ↓ | 8.483 | | gsarti/flores_101_luo | luo | byte_perplexity ↓ | 11.976 | | gsarti/flores_101_mal | mal | byte_perplexity ↓ | 4.616 | | gsarti/flores_101_mar | mar | byte_perplexity ↓ | 5.483 | | gsarti/flores_101_mkd | mkd | byte_perplexity ↓ | 2.966 | | gsarti/flores_101_mlt | mlt | byte_perplexity ↓ | 15.005 | | gsarti/flores_101_mon | mon | byte_perplexity ↓ | 3.411 | | gsarti/flores_101_mri | mri | byte_perplexity ↓ | 7.474 | | gsarti/flores_101_msa | msa | byte_perplexity ↓ | 2.571 | | gsarti/flores_101_mya | mya | byte_perplexity ↓ | 2.414 | | gsarti/flores_101_nld | nld | byte_perplexity ↓ | 4.128 | | gsarti/flores_101_nob | nob | byte_perplexity ↓ | 5.403 | | gsarti/flores_101_npi | npi | byte_perplexity ↓ | 5.199 | | gsarti/flores_101_nso | nso | byte_perplexity ↓ | 8.155 | | gsarti/flores_101_nya | nya | byte_perplexity ↓ | 8.18 | | gsarti/flores_101_oci | oci | byte_perplexity ↓ | 4.862 | | gsarti/flores_101_orm | orm | byte_perplexity ↓ | 12.912 | | gsarti/flores_101_ory | ory | byte_perplexity ↓ | 5.189 | | gsarti/flores_101_pan | pan | byte_perplexity ↓ | 4.698 | | gsarti/flores_101_pol | pol | byte_perplexity ↓ | 4.626 | | gsarti/flores_101_por | por | byte_perplexity ↓ | 1.975 | | gsarti/flores_101_pus | pus | byte_perplexity ↓ | 4.496 | | gsarti/flores_101_ron | ron | byte_perplexity ↓ | 4.965 | | gsarti/flores_101_rus | rus | byte_perplexity ↓ | 2.05 | | gsarti/flores_101_slk | slk | byte_perplexity ↓ | 6.451 | | gsarti/flores_101_slv | slv | byte_perplexity ↓ | 6.62 | | gsarti/flores_101_sna | sna | byte_perplexity ↓ | 8.462 | | gsarti/flores_101_snd | snd | byte_perplexity ↓ | 5.466 | | gsarti/flores_101_som | som | byte_perplexity ↓ | 11.959 | | gsarti/flores_101_spa | spa | byte_perplexity ↓ | 1.897 | | gsarti/flores_101_srp | srp | byte_perplexity ↓ | 2.871 | | gsarti/flores_101_swe | swe | byte_perplexity ↓ | 5.055 | | gsarti/flores_101_swh | swh | byte_perplexity ↓ | 3.697 | | gsarti/flores_101_tam | tam | byte_perplexity ↓ | 4.539 | | gsarti/flores_101_tel | tel | byte_perplexity ↓ | 5.807 | | gsarti/flores_101_tgk | tgk | byte_perplexity ↓ | 3.599 | | gsarti/flores_101_tgl | tgl | byte_perplexity ↓ | 5.667 | | gsarti/flores_101_tha | tha | byte_perplexity ↓ | 2.366 | | gsarti/flores_101_tur | tur | byte_perplexity ↓ | 4.885 | | gsarti/flores_101_ukr | ukr | byte_perplexity ↓ | 2.724 | | gsarti/flores_101_umb | umb | byte_perplexity ↓ | 12.767 | | gsarti/flores_101_urd | urd | byte_perplexity ↓ | 1.98 | | gsarti/flores_101_uzb | uzb | byte_perplexity ↓ | 12.002 | | gsarti/flores_101_vie | vie | byte_perplexity ↓ | 1.766 | | gsarti/flores_101_wol | wol | byte_perplexity ↓ | 9.144 | | gsarti/flores_101_xho | xho | byte_perplexity ↓ | 7.403 | | gsarti/flores_101_yor | yor | byte_perplexity ↓ | 5.913 | | gsarti/flores_101_zho_simpl | zho_simpl | byte_perplexity ↓ | 2.277 | | gsarti/flores_101_zho_trad | zho_trad | byte_perplexity ↓ | 2.518 | | gsarti/flores_101_zul | zul | byte_perplexity ↓ | 8.534 | | headqa | esp | acc ↑ | 0.264 | | hellaswag | eng | acc ↑ | 0.412 | | logiqa | eng | acc ↑ | 0.207 | | mathqa | eng | acc ↑ | 0.25 | | mc_taco | eng | em ↑ | 0.119 | | mnli (Median of 15 prompts) | eng | acc ↑ | 0.355 | | mnli_mismatched (Median of 15 prompts) | eng | acc ↑ | 0.352 | | mrpc | eng | acc ↑ | 0.586 | | multirc (Median of 11 prompts) | eng | acc ↑ | 0.538 | | openbookqa | eng | acc ↑ | 0.216 | | piqa | eng | acc ↑ | 0.708 | | prost | eng | acc ↑ | 0.227 | | pubmedqa | eng | acc ↑ | 0.616 | | qnli | eng | acc ↑ | 0.507 | | qqp (Median of 7 prompts) | eng | acc ↑ | 0.384 | | race | eng | acc ↑ | 0.352 | | rte (Median of 6 prompts) | eng | acc ↑ | 0.477 | | sciq | eng | acc ↑ | 0.892 | | sst (Median of 6 prompts) | eng | acc ↑ | 0.518 | | triviaqa | eng | acc ↑ | 0.042 | | tydiqa_primary (Median of 24 prompts) | eng | acc ↑ | 0.301 | | webqs | eng | acc ↑ | 0.017 | | wic (Median of 11 prompts) | eng | acc ↑ | 0.502 | | winogrande | eng | acc ↑ | 0.586 | | wnli (Median of 6 prompts) | eng | acc ↑ | 0.472 | | wsc (Median of 11 prompts) | eng | acc ↑ | 0.442 | | humaneval | python | pass@1 ↑ | 0.155 | | humaneval | python | pass@10 ↑ | 0.322 | | humaneval | python | pass@100 ↑ | 0.555 | **Train-time Evaluation:** As of 25.May.2022, 15:00 PST: - Training Loss: 2.0 - Validation Loss: 2.2 - Perplexity: 8.9

 

## Recommendations *This section provides information on warnings and potential mitigations.*
Click to expand
- Indirect users should be made aware when the content they're working with is created by the LLM. - Users should be aware of [Risks and Limitations](#risks-and-limitations), and include an appropriate age disclaimer or blocking interface as necessary. - Models pretrained with the LLM should include an updated Model Card. - Users of the model should provide mechanisms for those affected to provide feedback, such as an email address for comments.

 

## Glossary and Calculations *This section defines common terms and how metrics are calculated.*
Click to expand
- **Loss:** A calculation of the difference between what the model has learned and what the data shows ("groundtruth"). The lower the loss, the better. The training process aims to minimize the loss. - **Perplexity:** This is based on what the model estimates the probability of new data is. The lower the perplexity, the better. If the model is 100% correct at predicting the next token it will see, then the perplexity is 1. Mathematically this is calculated using entropy. - **High-stakes settings:** Such as those identified as "high-risk AI systems" and "unacceptable risk AI systems" in the European Union's proposed [Artificial Intelligence (AI) Act](https://artificialintelligenceact.eu/annexes/). - **Critical decisions:** Such as those defined in [the United States' proposed Algorithmic Accountability Act](https://www.congress.gov/117/bills/s3572/BILLS-117s3572is.pdf). - **Human rights:** Includes those rights defined in the [Universal Declaration of Human Rights](https://www.un.org/sites/un2.un.org/files/2021/03/udhr.pdf). - **Personal Data and Personal Information:** Personal data and information is defined in multiple data protection regulations, such as "[personal data](https://gdpr-info.eu/issues/personal-data/)" in the [European Union's General Data Protection Regulation](https://gdpr-info.eu); and "personal information" in the Republic of South Africa's [Protection of Personal Information Act](https://www.gov.za/sites/default/files/gcis_document/201409/3706726-11act4of2013popi.pdf), The People's Republic of China's [Personal information protection law](http://en.npc.gov.cn.cdurl.cn/2021-12/29/c_694559.htm). - **Sensitive characteristics:** This includes specifically protected categories in human rights (see [UHDR, Article 2](https://www.un.org/sites/un2.un.org/files/2021/03/udhr.pdf)) and personal information regulation (see GDPR, [Article 9; Protection of Personal Information Act, Chapter 1](https://www.gov.za/sites/default/files/gcis_document/201409/3706726-11act4of2013popi.pdf)) - **Deception:** Doing something to intentionally mislead individuals to believe something that is false, such as by creating deadbots or chatbots on social media posing as real people, or generating text documents without making consumers aware that the text is machine generated.

 

## More Information
Click to expand
### Dataset Creation Blog post detailing the design choices during the dataset creation: https://bigscience.huggingface.co/blog/building-a-tb-scale-multilingual-dataset-for-language-modeling ### Technical Specifications Blog post summarizing how the architecture, size, shape, and pre-training duration where selected: https://bigscience.huggingface.co/blog/what-language-model-to-train-if-you-have-two-million-gpu-hours More details on the architecture/optimizer: https://github.com/bigscience-workshop/bigscience/tree/master/train/tr11-176B-ml Blog post on the hardware/engineering side: https://bigscience.huggingface.co/blog/which-hardware-to-train-a-176b-parameters-model Details on the distributed setup used for the training: https://github.com/bigscience-workshop/bigscience/tree/master/train/tr11-176B-ml Tensorboard updated during the training: https://huggingface.co/bigscience/tr11-176B-ml-logs/tensorboard#scalars&tagFilter=loss Insights on how to approach training, negative results: https://github.com/bigscience-workshop/bigscience/blob/master/train/lessons-learned.md Details on the obstacles overcome during the preparation on the engineering side (instabilities, optimization of training throughput, so many technical tricks and questions): https://github.com/bigscience-workshop/bigscience/blob/master/train/tr11-176B-ml/chronicles.md ### Initial Results Initial prompting experiments using interim checkpoints: https://huggingface.co/spaces/bigscience/bloom-book

 

## Model Card Authors *Ordered roughly chronologically and by amount of time spent.* Margaret Mitchell, Giada Pistilli, Yacine Jernite, Ezinwanne Ozoani, Marissa Gerchick, Nazneen Rajani, Sasha Luccioni, Irene Solaiman, Maraim Masoud, Somaieh Nikpoor, Carlos Muñoz Ferrandis, Stas Bekman, Christopher Akiki, Danish Contractor, David Lansky, Angelina McMillan-Major, Tristan Thrush, Suzana Ilić, Gérard Dupont, Shayne Longpre, Manan Dey, Stella Biderman, Douwe Kiela, Emi Baylor, Teven Le Scao, Aaron Gokaslan, Julien Launay, Niklas Muennighoff