RichardErkhov commited on
Commit
24a8130
1 Parent(s): 3f40657

uploaded readme

Browse files
Files changed (1) hide show
  1. README.md +401 -0
README.md ADDED
@@ -0,0 +1,401 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Quantization made by Richard Erkhov.
2
+
3
+ [Github](https://github.com/RichardErkhov)
4
+
5
+ [Discord](https://discord.gg/pvy7H8DZMG)
6
+
7
+ [Request more models](https://github.com/RichardErkhov/quant_request)
8
+
9
+
10
+ neural-chat-7b-v3-3 - GGUF
11
+ - Model creator: https://huggingface.co/Intel/
12
+ - Original model: https://huggingface.co/Intel/neural-chat-7b-v3-3/
13
+
14
+
15
+ | Name | Quant method | Size |
16
+ | ---- | ---- | ---- |
17
+ | [neural-chat-7b-v3-3.Q2_K.gguf](https://huggingface.co/RichardErkhov/Intel_-_neural-chat-7b-v3-3-gguf/blob/main/neural-chat-7b-v3-3.Q2_K.gguf) | Q2_K | 2.53GB |
18
+ | [neural-chat-7b-v3-3.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/Intel_-_neural-chat-7b-v3-3-gguf/blob/main/neural-chat-7b-v3-3.Q3_K_S.gguf) | Q3_K_S | 2.95GB |
19
+ | [neural-chat-7b-v3-3.Q3_K.gguf](https://huggingface.co/RichardErkhov/Intel_-_neural-chat-7b-v3-3-gguf/blob/main/neural-chat-7b-v3-3.Q3_K.gguf) | Q3_K | 3.28GB |
20
+ | [neural-chat-7b-v3-3.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/Intel_-_neural-chat-7b-v3-3-gguf/blob/main/neural-chat-7b-v3-3.Q3_K_M.gguf) | Q3_K_M | 3.28GB |
21
+ | [neural-chat-7b-v3-3.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/Intel_-_neural-chat-7b-v3-3-gguf/blob/main/neural-chat-7b-v3-3.Q3_K_L.gguf) | Q3_K_L | 3.56GB |
22
+ | [neural-chat-7b-v3-3.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/Intel_-_neural-chat-7b-v3-3-gguf/blob/main/neural-chat-7b-v3-3.IQ4_XS.gguf) | IQ4_XS | 3.67GB |
23
+ | [neural-chat-7b-v3-3.Q4_0.gguf](https://huggingface.co/RichardErkhov/Intel_-_neural-chat-7b-v3-3-gguf/blob/main/neural-chat-7b-v3-3.Q4_0.gguf) | Q4_0 | 3.83GB |
24
+ | [neural-chat-7b-v3-3.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/Intel_-_neural-chat-7b-v3-3-gguf/blob/main/neural-chat-7b-v3-3.IQ4_NL.gguf) | IQ4_NL | 3.87GB |
25
+ | [neural-chat-7b-v3-3.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/Intel_-_neural-chat-7b-v3-3-gguf/blob/main/neural-chat-7b-v3-3.Q4_K_S.gguf) | Q4_K_S | 3.86GB |
26
+ | [neural-chat-7b-v3-3.Q4_K.gguf](https://huggingface.co/RichardErkhov/Intel_-_neural-chat-7b-v3-3-gguf/blob/main/neural-chat-7b-v3-3.Q4_K.gguf) | Q4_K | 4.07GB |
27
+ | [neural-chat-7b-v3-3.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/Intel_-_neural-chat-7b-v3-3-gguf/blob/main/neural-chat-7b-v3-3.Q4_K_M.gguf) | Q4_K_M | 4.07GB |
28
+ | [neural-chat-7b-v3-3.Q4_1.gguf](https://huggingface.co/RichardErkhov/Intel_-_neural-chat-7b-v3-3-gguf/blob/main/neural-chat-7b-v3-3.Q4_1.gguf) | Q4_1 | 4.24GB |
29
+ | [neural-chat-7b-v3-3.Q5_0.gguf](https://huggingface.co/RichardErkhov/Intel_-_neural-chat-7b-v3-3-gguf/blob/main/neural-chat-7b-v3-3.Q5_0.gguf) | Q5_0 | 4.65GB |
30
+ | [neural-chat-7b-v3-3.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/Intel_-_neural-chat-7b-v3-3-gguf/blob/main/neural-chat-7b-v3-3.Q5_K_S.gguf) | Q5_K_S | 4.65GB |
31
+ | [neural-chat-7b-v3-3.Q5_K.gguf](https://huggingface.co/RichardErkhov/Intel_-_neural-chat-7b-v3-3-gguf/blob/main/neural-chat-7b-v3-3.Q5_K.gguf) | Q5_K | 4.78GB |
32
+ | [neural-chat-7b-v3-3.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/Intel_-_neural-chat-7b-v3-3-gguf/blob/main/neural-chat-7b-v3-3.Q5_K_M.gguf) | Q5_K_M | 4.78GB |
33
+ | [neural-chat-7b-v3-3.Q5_1.gguf](https://huggingface.co/RichardErkhov/Intel_-_neural-chat-7b-v3-3-gguf/blob/main/neural-chat-7b-v3-3.Q5_1.gguf) | Q5_1 | 5.07GB |
34
+ | [neural-chat-7b-v3-3.Q6_K.gguf](https://huggingface.co/RichardErkhov/Intel_-_neural-chat-7b-v3-3-gguf/blob/main/neural-chat-7b-v3-3.Q6_K.gguf) | Q6_K | 5.53GB |
35
+ | [neural-chat-7b-v3-3.Q8_0.gguf](https://huggingface.co/RichardErkhov/Intel_-_neural-chat-7b-v3-3-gguf/blob/main/neural-chat-7b-v3-3.Q8_0.gguf) | Q8_0 | 7.17GB |
36
+
37
+
38
+
39
+
40
+ Original model description:
41
+ ---
42
+ license: apache-2.0
43
+ tags:
44
+ - LLMs
45
+ - mistral
46
+ - math
47
+ - Intel
48
+ base_model: Intel/neural-chat-7b-v3-1
49
+ model-index:
50
+ - name: neural-chat-7b-v3-3
51
+ results:
52
+ - task:
53
+ type: Large Language Model
54
+ name: Large Language Model
55
+ dataset:
56
+ name: meta-math/MetaMathQA
57
+ type: meta-math/MetaMathQA
58
+ metrics:
59
+ - type: ARC (25-shot)
60
+ value: 66.89
61
+ name: ARC (25-shot)
62
+ verified: true
63
+ - type: HellaSwag (10-shot)
64
+ value: 85.26
65
+ name: HellaSwag (10-shot)
66
+ verified: true
67
+ - type: MMLU (5-shot)
68
+ value: 63.07
69
+ name: MMLU (5-shot)
70
+ verified: true
71
+ - type: TruthfulQA (0-shot)
72
+ value: 63.01
73
+ name: TruthfulQA (0-shot)
74
+ verified: true
75
+ - type: Winogrande (5-shot)
76
+ value: 79.64
77
+ name: Winogrande (5-shot)
78
+ verified: true
79
+ - type: GSM8K (5-shot)
80
+ value: 61.11
81
+ name: GSM8K (5-shot)
82
+ verified: true
83
+ - task:
84
+ type: text-generation
85
+ name: Text Generation
86
+ dataset:
87
+ name: AI2 Reasoning Challenge (25-Shot)
88
+ type: ai2_arc
89
+ config: ARC-Challenge
90
+ split: test
91
+ args:
92
+ num_few_shot: 25
93
+ metrics:
94
+ - type: acc_norm
95
+ value: 66.89
96
+ name: normalized accuracy
97
+ source:
98
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Intel/neural-chat-7b-v3-3
99
+ name: Open LLM Leaderboard
100
+ - task:
101
+ type: text-generation
102
+ name: Text Generation
103
+ dataset:
104
+ name: HellaSwag (10-Shot)
105
+ type: hellaswag
106
+ split: validation
107
+ args:
108
+ num_few_shot: 10
109
+ metrics:
110
+ - type: acc_norm
111
+ value: 85.26
112
+ name: normalized accuracy
113
+ source:
114
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Intel/neural-chat-7b-v3-3
115
+ name: Open LLM Leaderboard
116
+ - task:
117
+ type: text-generation
118
+ name: Text Generation
119
+ dataset:
120
+ name: MMLU (5-Shot)
121
+ type: cais/mmlu
122
+ config: all
123
+ split: test
124
+ args:
125
+ num_few_shot: 5
126
+ metrics:
127
+ - type: acc
128
+ value: 63.07
129
+ name: accuracy
130
+ source:
131
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Intel/neural-chat-7b-v3-3
132
+ name: Open LLM Leaderboard
133
+ - task:
134
+ type: text-generation
135
+ name: Text Generation
136
+ dataset:
137
+ name: TruthfulQA (0-shot)
138
+ type: truthful_qa
139
+ config: multiple_choice
140
+ split: validation
141
+ args:
142
+ num_few_shot: 0
143
+ metrics:
144
+ - type: mc2
145
+ value: 63.01
146
+ source:
147
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Intel/neural-chat-7b-v3-3
148
+ name: Open LLM Leaderboard
149
+ - task:
150
+ type: text-generation
151
+ name: Text Generation
152
+ dataset:
153
+ name: Winogrande (5-shot)
154
+ type: winogrande
155
+ config: winogrande_xl
156
+ split: validation
157
+ args:
158
+ num_few_shot: 5
159
+ metrics:
160
+ - type: acc
161
+ value: 79.64
162
+ name: accuracy
163
+ source:
164
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Intel/neural-chat-7b-v3-3
165
+ name: Open LLM Leaderboard
166
+ - task:
167
+ type: text-generation
168
+ name: Text Generation
169
+ dataset:
170
+ name: GSM8k (5-shot)
171
+ type: gsm8k
172
+ config: main
173
+ split: test
174
+ args:
175
+ num_few_shot: 5
176
+ metrics:
177
+ - type: acc
178
+ value: 61.11
179
+ name: accuracy
180
+ source:
181
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Intel/neural-chat-7b-v3-3
182
+ name: Open LLM Leaderboard
183
+ ---
184
+
185
+ ## Model Details: Neural-Chat-v3-3
186
+
187
+ This model is a fine-tuned 7B parameter LLM on the Intel Gaudi 2 processor from the [Intel/neural-chat-7b-v3-1](https://huggingface.co/Intel/neural-chat-7b-v3-1) on the [meta-math/MetaMathQA](https://huggingface.co/datasets/meta-math/MetaMathQA) dataset. The model was aligned using the Direct Performance Optimization (DPO) method with [Intel/orca_dpo_pairs](https://huggingface.co/datasets/Intel/orca_dpo_pairs). The [Intel/neural-chat-7b-v3-1](https://huggingface.co/Intel/neural-chat-7b-v3-1) was originally fine-tuned from [mistralai/Mistral-7B-v-0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1). For more information, refer to the blog [The Practice of Supervised Fine-tuning and Direct Preference Optimization on Intel Gaudi2](https://medium.com/@NeuralCompressor/the-practice-of-supervised-finetuning-and-direct-preference-optimization-on-habana-gaudi2-a1197d8a3cd3).
188
+
189
+ <p align="center">
190
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/6297f0e30bd2f58c647abb1d/ctASHUT5QYIxMsOFa-sHC.webp" width="500"/>
191
+ Photo by Google DeepMind on Unsplash
192
+ </p>
193
+
194
+ | Model Detail | Description |
195
+ | ----------- | ----------- |
196
+ | Model Authors - Company | Intel. The NeuralChat team with members from DCAI/AISE/AIPT. Core team members: Kaokao Lv, Liang Lv, Chang Wang, Wenxin Zhang, Xuhui Ren, and Haihao Shen.|
197
+ | Date | December, 2023 |
198
+ | Version | v3-3 |
199
+ | Type | 7B Large Language Model |
200
+ | Paper or Other Resources | [Medium Blog](https://medium.com/@NeuralCompressor/the-practice-of-supervised-finetuning-and-direct-preference-optimization-on-habana-gaudi2-a1197d8a3cd3) |
201
+ | License | Apache 2.0 |
202
+ | Questions or Comments | [Community Tab](https://huggingface.co/Intel/neural-chat-7b-v3-3/discussions) and [Intel Developers Discord](https://discord.gg/rv2Gp55UJQ)|
203
+
204
+ | Intended Use | Description |
205
+ | ----------- | ----------- |
206
+ | Primary intended uses | You can use the fine-tuned model for several language-related tasks. Checkout the [LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) to see how this model is doing. |
207
+ | Primary intended users | Anyone doing inference on language-related tasks. |
208
+ | Out-of-scope uses | This model in most cases will need to be fine-tuned for your particular task. The model should not be used to intentionally create hostile or alienating environments for people.|
209
+
210
+ ## How To Use
211
+
212
+ Context length for this model: 8192 tokens (same as https://huggingface.co/mistralai/Mistral-7B-v0.1)
213
+
214
+ ### Reproduce the model
215
+ Here is the sample code to reproduce the model: [GitHub sample code](https://github.com/intel/intel-extension-for-transformers/blob/main/intel_extension_for_transformers/neural_chat/examples/finetuning/finetune_neuralchat_v3). Here is the documentation to reproduce building the model:
216
+
217
+ ```bash
218
+ git clone https://github.com/intel/intel-extension-for-transformers.git
219
+ cd intel-extension-for-transformers
220
+
221
+ docker build --no-cache ./ --target hpu --build-arg REPO=https://github.com/intel/intel-extension-for-transformers.git --build-arg ITREX_VER=main -f ./intel_extension_for_transformers/neural_chat/docker/Dockerfile -t chatbot_finetuning:latest
222
+
223
+ docker run -it --runtime=habana -e HABANA_VISIBLE_DEVICES=all -e OMPI_MCA_btl_vader_single_copy_mechanism=none --cap-add=sys_nice --net=host --ipc=host chatbot_finetuning:latest
224
+
225
+ # after entering docker container
226
+ cd examples/finetuning/finetune_neuralchat_v3
227
+
228
+ ```
229
+ We select the latest pretrained mistralai/Mistral-7B-v0.1 and the open source dataset Open-Orca/SlimOrca to conduct the experiment.
230
+
231
+ The below script use deepspeed zero2 to lanuch the training with 8 cards Gaudi2. In the `finetune_neuralchat_v3.py`, the default `use_habana=True, use_lazy_mode=True, device="hpu"` for Gaudi2. And if you want to run it on NVIDIA GPU, you can set them `use_habana=False, use_lazy_mode=False, device="auto"`.
232
+
233
+ ```python
234
+ deepspeed --include localhost:0,1,2,3,4,5,6,7 \
235
+ --master_port 29501 \
236
+ finetune_neuralchat_v3.py
237
+ ```
238
+
239
+ Merge the LoRA weights:
240
+
241
+ ```python
242
+ python apply_lora.py \
243
+ --base-model-path mistralai/Mistral-7B-v0.1 \
244
+ --lora-model-path finetuned_model/ \
245
+ --output-path finetuned_model_lora
246
+ ```
247
+
248
+ ### Use the model
249
+
250
+ ### FP32 Inference with Transformers
251
+
252
+ ```python
253
+ import transformers
254
+
255
+
256
+ model_name = 'Intel/neural-chat-7b-v3-3'
257
+ model = transformers.AutoModelForCausalLM.from_pretrained(model_name)
258
+ tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
259
+
260
+ def generate_response(system_input, user_input):
261
+
262
+ # Format the input using the provided template
263
+ prompt = f"### System:\n{system_input}\n### User:\n{user_input}\n### Assistant:\n"
264
+
265
+ # Tokenize and encode the prompt
266
+ inputs = tokenizer.encode(prompt, return_tensors="pt", add_special_tokens=False)
267
+
268
+ # Generate a response
269
+ outputs = model.generate(inputs, max_length=1000, num_return_sequences=1)
270
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
271
+
272
+ # Extract only the assistant's response
273
+ return response.split("### Assistant:\n")[-1]
274
+
275
+
276
+ # Example usage
277
+ system_input = "You are a math expert assistant. Your mission is to help users understand and solve various math problems. You should provide step-by-step solutions, explain reasonings and give the correct answer."
278
+ user_input = "calculate 100 + 520 + 60"
279
+ response = generate_response(system_input, user_input)
280
+ print(response)
281
+
282
+ # expected response
283
+ """
284
+ To calculate the sum of 100, 520, and 60, we will follow these steps:
285
+
286
+ 1. Add the first two numbers: 100 + 520
287
+ 2. Add the result from step 1 to the third number: (100 + 520) + 60
288
+
289
+ Step 1: Add 100 and 520
290
+ 100 + 520 = 620
291
+
292
+ Step 2: Add the result from step 1 to the third number (60)
293
+ (620) + 60 = 680
294
+
295
+ So, the sum of 100, 520, and 60 is 680.
296
+ """
297
+ ```
298
+
299
+ ### BF16 Inference with Intel Extension for Transformers and Intel Extension for Pytorch
300
+ ```python
301
+ from transformers import AutoTokenizer, TextStreamer
302
+ import torch
303
+ from intel_extension_for_transformers.transformers import AutoModelForCausalLM
304
+ import intel_extension_for_pytorch as ipex
305
+
306
+ model_name = "Intel/neural-chat-7b-v3-3"
307
+ prompt = "Once upon a time, there existed a little girl,"
308
+
309
+ tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
310
+ inputs = tokenizer(prompt, return_tensors="pt").input_ids
311
+ streamer = TextStreamer(tokenizer)
312
+
313
+ model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
314
+ model = ipex.optimize(model.eval(), dtype=torch.bfloat16, inplace=True, level="O1", auto_kernel_selection=True)
315
+
316
+ outputs = model.generate(inputs, streamer=streamer, max_new_tokens=300)
317
+ ```
318
+
319
+ ### INT4 Inference with Transformers and Intel Extension for Transformers
320
+ ```python
321
+ from transformers import AutoTokenizer, TextStreamer
322
+ from intel_extension_for_transformers.transformers import AutoModelForCausalLM, WeightOnlyQuantConfig
323
+ model_name = "Intel/neural-chat-7b-v3-3"
324
+
325
+ # for int8, should set weight_dtype="int8"
326
+ config = WeightOnlyQuantConfig(compute_dtype="bf16", weight_dtype="int4")
327
+ prompt = "Once upon a time, there existed a little girl,"
328
+
329
+ tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
330
+ inputs = tokenizer(prompt, return_tensors="pt").input_ids
331
+ streamer = TextStreamer(tokenizer)
332
+
333
+ model = AutoModelForCausalLM.from_pretrained(model_name, quantization_config=config)
334
+ outputs = model.generate(inputs, streamer=streamer, max_new_tokens=300)
335
+
336
+ ```
337
+
338
+
339
+ | Factors | Description |
340
+ | ----------- | ----------- |
341
+ | Groups | More details about the dataset and annotations can be found at [meta-math/MetaMathQA](https://huggingface.co/datasets/meta-math/MetaMathQA), the project page https://meta-math.github.io/, and the associated paper at https://arxiv.org/abs/2309.12284. |
342
+ | Instrumentation | The performance of the model can vary depending on the inputs to the model. In this case, the prompts provided can drastically change the prediction of the language model. |
343
+ | Environment | The model was trained on the Intel Gaudi 2 processor (8 cards). |
344
+ | Card Prompts | Model deployment on alternate hardware and software will change model performance. The model evaluation factors are from the Hugging Face LLM leaderboard: ARC, HellaSwag, MMLU, TruthfulQA, Winogrande, and GSM8K (see Quantitative Analyses below). |
345
+
346
+ | Metrics | Description |
347
+ | ----------- | ----------- |
348
+ | Model performance measures | The model performance was evaluated against other LLMs according to the measures on the LLM leaderboard. These were selected as this has become the standard for LLM performance. |
349
+ | Decision thresholds | No decision thresholds were used. |
350
+ | Approaches to uncertainty and variability | - |
351
+
352
+ | Training and Evaluation Data | Description |
353
+ | ----------- | ----------- |
354
+ | Datasets | The training data are from [meta-math/MetaMathQA](https://huggingface.co/datasets/meta-math/MetaMathQA), which is augmented from the GSM8k and MATH training sets. There is no contamination from the GSM8k test set, as this was left out during training.|
355
+ | Motivation | - |
356
+ | Preprocessing | - |
357
+
358
+ ## Quantitative Analyses
359
+ The Open LLM Leaderboard results can be found here: [https://huggingface.co/datasets/open-llm-leaderboard/details_Intel__neural-chat-7b-v3-3](https://huggingface.co/datasets/open-llm-leaderboard/details_Intel__neural-chat-7b-v3-3). The metrics came out to:
360
+
361
+ | Metric | Value |
362
+ |-----------------------|---------------------------|
363
+ | Avg. | 69.83 |
364
+ | ARC (25-shot) | 66.89 |
365
+ | HellaSwag (10-shot) | 85.26 |
366
+ | MMLU (5-shot) | 63.07 |
367
+ | TruthfulQA (0-shot) | 63.01 |
368
+ | Winogrande (5-shot) | 79.64 |
369
+ | GSM8K (5-shot) | 61.11 |
370
+
371
+ ## Ethical Considerations and Limitations
372
+ Neural-chat-7b-v3-3 can produce factually incorrect output, and should not be relied on to produce factually accurate information. Because of the limitations of the pretrained model and the finetuning datasets, it is possible that this model could generate lewd, biased or otherwise offensive outputs.
373
+
374
+ Therefore, before deploying any applications of neural-chat-7b-v3-3, developers should perform safety testing.
375
+
376
+ ## Caveats and Recommendations
377
+
378
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model.
379
+
380
+ Here are a couple of useful links to learn more about Intel's AI software:
381
+ * Intel Neural Compressor [link](https://github.com/intel/neural-compressor)
382
+ * Intel Extension for Transformers [link](https://github.com/intel/intel-extension-for-transformers)
383
+
384
+ ## Disclaimer
385
+
386
+ The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model. Please cosult an attorney before using this model for commercial purposes.
387
+ # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
388
+ Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Intel__neural-chat-7b-v3-3)
389
+
390
+ | Metric |Value|
391
+ |---------------------------------|----:|
392
+ |Avg. |69.83|
393
+ |AI2 Reasoning Challenge (25-Shot)|66.89|
394
+ |HellaSwag (10-Shot) |85.26|
395
+ |MMLU (5-Shot) |63.07|
396
+ |TruthfulQA (0-shot) |63.01|
397
+ |Winogrande (5-shot) |79.64|
398
+ |GSM8k (5-shot) |61.11|
399
+
400
+
401
+