See axolotl config
axolotl version: 0.9.2
base_model: Qwen/Qwen3-4B
# Automatically upload checkpoint and final model to HF
hub_model_id: Rexhaif/Qwen3-4B-MTEval-SFT
hub_private_repo: false
load_in_8bit: false
load_in_4bit: false
strict: false
chat_template: tokenizer_default
datasets:
- path: Rexhaif/wmt23-pairs-sft
split: "train"
type: chat_template
field_messages: messages
roles_to_train: ["assistant"]
shuffle_merged_datasets: true
skip_prepare_dataset: false
dataset_prepared_path: ./data/wmt23-pairs-sft
output_dir: /hnvme/workspace/v106be28-outputs/sft-4b
dataloader_prefetch_factor: 32
dataloader_num_workers: 2
dataloader_pin_memory: true
gc_steps: 1
sequence_len: 512
sample_packing: false
eval_sample_packing: false
pad_to_sequence_len: false
wandb_project: llm-reasoning-mt-eval
wandb_entity:
wandb_name: qwen3-4b-sft
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
liger_layer_norm: true
liger_fused_linear_cross_entropy: true
gradient_accumulation_steps: 2
micro_batch_size: 32 # should match num_generations / num_gpus
optimizer: adamw_torch_fused
lr_scheduler: cosine
learning_rate: 5.0e-5
cosine_min_lr_ratio: 1.0e-7
max_grad_norm: 1.0
weight_decay: 0.1
bf16: true
tf32: true
flash_attention: true
flash_attn_fuse_qkv: true
flash_attn_fuse_mlp: true
auto_resume_from_checkpoints: true
n_epochs: 3
logging_steps: 10
warmup_ratio: 0.1
evals_per_epoch: 10
saves_per_epoch: 10
save_total_limit: 1
#max_steps: 5000
seed: 42
val_set_size: 0.01
gradient_checkpointing: false
gradient_checkpointing_kwargs:
use_reentrant: false
Qwen3-4B-MTEval-SFT
This model is a fine-tuned version of Qwen/Qwen3-4B on the Rexhaif/wmt23-pairs-sft dataset. It achieves the following results on the evaluation set:
- Loss: 0.0511
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 256
- total_eval_batch_size: 128
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 101
- num_epochs: 1.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0010 | 1 | 19.7622 |
0.251 | 0.1003 | 102 | 0.2284 |
0.2008 | 0.2007 | 204 | 0.1928 |
0.1571 | 0.3010 | 306 | 0.1638 |
0.1264 | 0.4014 | 408 | 0.1307 |
0.0964 | 0.5017 | 510 | 0.1090 |
0.0933 | 0.6021 | 612 | 0.0939 |
0.0628 | 0.7024 | 714 | 0.0762 |
0.0581 | 0.8028 | 816 | 0.0598 |
0.0519 | 0.9031 | 918 | 0.0511 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.1
- Tokenizers 0.21.1
- Downloads last month
- 7
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support