See axolotl config
axolotl version: 0.9.2
base_model: Qwen/Qwen3-0.6B
# Automatically upload checkpoint and final model to HF
hub_model_id: Rexhaif/Qwen3-0.6B-MTEval-SFT
hub_private_repo: false
load_in_8bit: false
load_in_4bit: false
strict: false
chat_template: tokenizer_default
datasets:
- path: Rexhaif/wmt23-pairs-sft
split: "train"
type: chat_template
field_messages: messages
roles_to_train: ["assistant"]
shuffle_merged_datasets: true
skip_prepare_dataset: false
dataset_prepared_path: ./data/wmt23-pairs-sft
output_dir: /hnvme/workspace/v106be28-outputs/sft-0.6b
dataloader_prefetch_factor: 32
dataloader_num_workers: 2
dataloader_pin_memory: true
gc_steps: 1
sequence_len: 512
sample_packing: false
eval_sample_packing: false
pad_to_sequence_len: false
wandb_project: llm-reasoning-mt-eval
wandb_entity:
wandb_name: qw3-0.6b-sft
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
liger_layer_norm: true
liger_fused_linear_cross_entropy: true
gradient_accumulation_steps: 1
micro_batch_size: 64 # should match num_generations / num_gpus
optimizer: adamw_torch_fused
lr_scheduler: cosine
learning_rate: 5.0e-5
cosine_min_lr_ratio: 1.0e-7
max_grad_norm: 1.0
weight_decay: 0.1
bf16: true
tf32: true
flash_attention: true
flash_attn_fuse_qkv: true
flash_attn_fuse_mlp: true
auto_resume_from_checkpoints: true
n_epochs: 3
logging_steps: 10
warmup_ratio: 0.1
evals_per_epoch: 10
saves_per_epoch: 10
save_total_limit: 1
#max_steps: 5000
seed: 42
val_set_size: 0.01
gradient_checkpointing: false
gradient_checkpointing_kwargs:
use_reentrant: false
Qwen3-0.6B-MTEval-SFT
This model is a fine-tuned version of Qwen/Qwen3-0.6B on the Rexhaif/wmt23-pairs-sft dataset. It achieves the following results on the evaluation set:
- Loss: 0.0486
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 256
- total_eval_batch_size: 256
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 101
- num_epochs: 1.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0010 | 1 | 7.5881 |
0.2427 | 0.1003 | 102 | 0.2504 |
0.2062 | 0.2006 | 204 | 0.1936 |
0.1631 | 0.3009 | 306 | 0.1606 |
0.1315 | 0.4012 | 408 | 0.1243 |
0.0999 | 0.5015 | 510 | 0.1098 |
0.0871 | 0.6018 | 612 | 0.0871 |
0.0611 | 0.7021 | 714 | 0.0702 |
0.0586 | 0.8024 | 816 | 0.0564 |
0.0478 | 0.9027 | 918 | 0.0486 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.1
- Tokenizers 0.21.1
- Downloads last month
- 7
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support