{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f685fdc31c0>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686548952423996921, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAPJ9lj6BZZi//oucv37wlT+Zvsu/4Ru2PtTYs73awZm9i3SIvwVO+z9Ufa8+LeUdQMuS4L5UOl2/QwoOPkuvVz5DUxo/blyrv0xWRb9bcRi/KVqcP6GFvD8PL/0/HuZqPpbW2r9Gf48+xTknP3oInj/g7eU++ZYIv4AfjT3w5Es/NRpJv6G2jz+W5IS/N5alvgWhDr/yVpg/+IXEPldKjT6W6LI+QB3YP0csFT9gd5+9iquNvs9JV78fK8C/9T0EPgezUD9oYaA+VvZNPcWwEcB2vBU/Rn+PPsU5Jz9UWU+/GuWdP/6WPb+Lmka+hcjSP9LfKb/rTn8/ZHTEvwC/j7+mpSI/0FunP6GoIj64EKm+z16KP6qOpT/twus+iGG/vt+ywL+y6q86ua0Lv4egLT/zk1I/f4iVvvZNbb9x47Q8drwVP0Z/jz7FOSc/VFlPv6ynHEDp4mc/3BlbP+Uz8b+OlqA/TH35vyOjpT+9njE9TsSHv6SzHL+AsDS/0L9yQKTVrr97Z9G/WSziPlGTOsBC2Mg+pXy0P0J4DUDUq22/ckx3vxIHZj8STB2/A4VpQJbW2r9YWmTAZvPDv1RZT7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACEVnY2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAq4EvvQAAAAAvF+6/AAAAAKFHaz0AAAAA4Rr3PwAAAADvSce7AAAAAAxn/D8AAAAA6SKGvQAAAACul9u/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUfuUtAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgPgwvj0AAAAAion5vwAAAACK4Bu9AAAAAPaw/D8AAAAACguPuwAAAADKtv8/AAAAABlKAb4AAAAAJ5TfvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJ00BDcAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAI12m7AAAAADIP4L8AAAAAtzn5PQAAAABU/uQ/AAAAADRpnT0AAAAA9u7dPwAAAAB9LBK+AAAAAHk/AMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACT82a0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAwtf4PQAAAACUcuK/AAAAAJh8wD0AAAAAvdvqPwAAAABjidk9AAAAALjJ9T8AAAAArvy2PQAAAAAiEuO/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJolntWuHN6MAWyUTegDjAF0lEdAq+fBjx0+1XV9lChoBkdAmv/oDDCP62gHTegDaAhHQKvo+PUaybB1fZQoaAZHQJvbD06HTJBoB03oA2gIR0Cr8Z72lEZ0dX2UKGgGR0CZylBg/keZaAdN6ANoCEdAq/aqcNH6M3V9lChoBkdAmlEd1uBMBmgHTegDaAhHQKv4ITRIBil1fZQoaAZHQJq/n5WRzRxoB03oA2gIR0Cr+U/kvK2bdX2UKGgGR0CYvB/cWTHKaAdN6ANoCEdArACFurIYFnV9lChoBkdAmgaGSdOIqWgHTegDaAhHQKwDsbgCOm11fZQoaAZHQJoTG/oJRfpoB03oA2gIR0CsBRokJKJ3dX2UKGgGR0CXQ6gQ6IWQaAdN6ANoCEdArAY+pAD7qXV9lChoBkdAmRKxjriVB2gHTegDaAhHQKwO1W3BpHt1fZQoaAZHQJfl5L39JjFoB03oA2gIR0CsE8I9kjHGdX2UKGgGR0CX2ahWYF7laAdN6ANoCEdArBWBesxO+XV9lChoBkdAmMhZzxPO6mgHTegDaAhHQKwWoQlKK511fZQoaAZHQJXre9lEqlRoB03oA2gIR0CsHgxREWqMdX2UKGgGR0CWSUlUIcBEaAdN6ANoCEdArCE5OvdM03V9lChoBkdAmj9HRCx/u2gHTegDaAhHQKwikEPDpC91fZQoaAZHQJWhnrfLs8hoB03oA2gIR0CsI70pNKywdX2UKGgGR0CWUSanJkoXaAdN6ANoCEdArCwPcFhXsHV9lChoBkdAltNTLW7OFGgHTegDaAhHQKwxKhmoR7J1fZQoaAZHQJX3sqhDgIhoB03oA2gIR0CsMwk/bCaadX2UKGgGR0CWQmkGzKLbaAdN6ANoCEdArDQloi9qUXV9lChoBkdAmFEEjLSuyWgHTegDaAhHQKw7U+De0ol1fZQoaAZHQJlcf+KjzqdoB03oA2gIR0CsPqCCrcTKdX2UKGgGR0CV+1yE+PilaAdN6ANoCEdArEAM6RyOrHV9lChoBkdAl+/CCe2/jGgHTegDaAhHQKxBNwnYxtZ1fZQoaAZHQJHqImmce8xoB03oA2gIR0CsSkrKNhmYdX2UKGgGR0CXYsReC04SaAdN6ANoCEdArE9UrkKeCnV9lChoBkdAlX8weq7yx2gHTegDaAhHQKxQ6SlFc6h1fZQoaAZHQJNFIqBmPHVoB03oA2gIR0CsUh6tT1kEdX2UKGgGR0CTA4fhMrVfaAdN6ANoCEdArFmEIeHSGHV9lChoBkdAkmJ/d2xIKGgHTegDaAhHQKxcxmQr+YN1fZQoaAZHQJHkLMbFS89oB03oA2gIR0CsXhrtu1nedX2UKGgGR0CPxMfQrtmdaAdN6ANoCEdArF8xgE2YOXV9lChoBkdAh4++Mhouf2gHTegDaAhHQKxn39VFQVN1fZQoaAZHQI+VPXsgMc9oB03oA2gIR0CsbOdPLxI8dX2UKGgGR0CRNsxX4j8laAdN6ANoCEdArG6P80k4WHV9lChoBkdAjRt91uBMBmgHTegDaAhHQKxvon2Iwdt1fZQoaAZHQJADGOwPiDNoB03oA2gIR0Csds+2mYShdX2UKGgGR0CQb7oK2KEWaAdN6ANoCEdArHoAZEUj9nV9lChoBkdAk7stLDhtL2gHTegDaAhHQKx7Z0J4SpR1fZQoaAZHQI73wxcmjTNoB03oA2gIR0CsfJPh60IDdX2UKGgGR0CH7PvcafjCaAdN6ANoCEdArIUNu1ndwnV9lChoBkdAkCgPXXiBG2gHTegDaAhHQKyJ7rdnCfp1fZQoaAZHQJNdAX/HYHxoB03oA2gIR0Csi70D2alUdX2UKGgGR0CQufb48EFGaAdN6ANoCEdArIzeRYA80XV9lChoBkdAlCJ+27Wd3GgHTegDaAhHQKyUGfNiYsx1fZQoaAZHQJLsfnzQNTdoB03oA2gIR0Csl1LCN0eVdX2UKGgGR0CRROhB7eEaaAdN6ANoCEdArJiooG6f8XV9lChoBkdAkvR/OdGy5mgHTegDaAhHQKyZ4a9bor51fZQoaAZHQJNIe02LpA5oB03oA2gIR0CsogpwbVBldX2UKGgGR0CTuYT3qRlpaAdN6ANoCEdArKcMRUWEb3V9lChoBkdAkPe+Ad4mkWgHTegDaAhHQKypCo86mwd1fZQoaAZHQJKiH7gsK9hoB03oA2gIR0CsqikUbkwOdX2UKGgGR0CSin6IFeOXaAdN6ANoCEdArLGnT1CgLHV9lChoBkdAksQEKNQ0oGgHTegDaAhHQKy08p5NXYF1fZQoaAZHQJBc3WVeKKpoB03oA2gIR0CstkzEaVD8dX2UKGgGR0CQRtZowmE5aAdN6ANoCEdArLeHq7iAD3V9lChoBkdAk7pC2Yv38GgHTegDaAhHQKzAKIwdsBR1fZQoaAZHQJEkaUhV2idoB03oA2gIR0CsxUsPatcOdX2UKGgGR0CTfZ7btZ3caAdN6ANoCEdArMcnvphWo3V9lChoBkdAk8JpjhDPW2gHTegDaAhHQKzITdEb5uZ1fZQoaAZHQJLG5a4c3l1oB03oA2gIR0Csz8dRaX8gdX2UKGgGR0CUBp39rGipaAdN6ANoCEdArNMLP0I1L3V9lChoBkdAktoUbLlmvmgHTegDaAhHQKzUd/aQFLZ1fZQoaAZHQJFw7kvK2a5oB03oA2gIR0Cs1aiW/rSmdX2UKGgGR0CTALMaCL/CaAdN6ANoCEdArOKR+jM3ZXV9lChoBkdAkHBbidat92gHTegDaAhHQKzoEVX3g1p1fZQoaAZHQJF3ufXf645oB03oA2gIR0Cs6cadc0LudX2UKGgGR0CVKZASWZ7YaAdN6ANoCEdArOr5ylvZRXV9lChoBkdAgyyTXjENv2gHTegDaAhHQKzyZDKHO8l1fZQoaAZHQJCYg1He7+VoB03oA2gIR0Cs9bgQQL/kdX2UKGgGR0CV588zhxYJaAdN6ANoCEdArPcfm1YyPHV9lChoBkdAk9SkTHsC1mgHTegDaAhHQKz4PlmOEM91fZQoaAZHQJTteY0EX+FoB03oA2gIR0CtAWAAZKnOdX2UKGgGR0CQFz4mTkhiaAdN6ANoCEdArQaePFNtZXV9lChoBkdAlJj2x6fJ3mgHTegDaAhHQK0IFKmKqGV1fZQoaAZHQJPqqs1baAZoB03oA2gIR0CtCTrPD50sdX2UKGgGR0CUCoSi/O+qaAdN6ANoCEdArRCOJk5IYnV9lChoBkdAlJe/4dp7C2gHTegDaAhHQK0T1PSlWOp1fZQoaAZHQJWf22BreqJoB03oA2gIR0CtFUJC8e0YdX2UKGgGR0CVfwqhlDneaAdN6ANoCEdArRZq7iADrHV9lChoBkdAlqmOfNA1N2gHTegDaAhHQK0f1zRx95R1fZQoaAZHQJe/aOYIBzVoB03oA2gIR0CtJKTi0fHQdX2UKGgGR0CS8xKCg9NfaAdN6ANoCEdArSYeNT987nV9lChoBkdAk1KMQEpy62gHTegDaAhHQK0nQUUwi7l1fZQoaAZHQJYYazt1IRRoB03oA2gIR0CtLsL433pOdX2UKGgGR0CVl7f9P1tgaAdN6ANoCEdArTIV3bEgn3V9lChoBkdAk5SwPd2xIWgHTegDaAhHQK0zdeJpFkR1fZQoaAZHQJF+T0ulGgBoB03oA2gIR0CtNLVYyO7ydX2UKGgGR0CRgROi35N5aAdN6ANoCEdArT4Nlbu+iHV9lChoBkdAk5W+IVM232gHTegDaAhHQK1CutwJgLJ1fZQoaAZHQJTyqpDNQj5oB03oA2gIR0CtRDGEoOQRdX2UKGgGR0CVJ+3s5XEJaAdN6ANoCEdArUVMp5NXYHV9lChoBkdAmHbhdIGyHGgHTegDaAhHQK1MqWGh24d1fZQoaAZHQJfBmZRbbDdoB03oA2gIR0CtT/gYpDu0dX2UKGgGR0CaZWLL6k6+aAdN6ANoCEdArVFi3XqZ+nV9lChoBkdAmV9se4kNWmgHTegDaAhHQK1Shky1uzh1fZQoaAZHQJVM7vQWvbJoB03oA2gIR0CtW9OEdvKmdX2UKGgGR0CaeTJ66asqaAdN6ANoCEdArWBjTa0x/XVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}