from meldataset import build_dataloader from optimizers import build_optimizer from utils import * from models import build_model from trainer import Trainer import os import os.path as osp import re import sys import yaml import shutil import numpy as np import torch from torch.utils.tensorboard import SummaryWriter import click import logging from logging import StreamHandler logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) handler = StreamHandler() handler.setLevel(logging.DEBUG) logger.addHandler(handler) torch.backends.cudnn.benchmark = True @click.command() @click.option('-p', '--config_path', default='./Configs/config.yml', type=str) def main(config_path): config = yaml.safe_load(open(config_path)) log_dir = config['log_dir'] if not osp.exists(log_dir): os.mkdir(log_dir) shutil.copy(config_path, osp.join(log_dir, osp.basename(config_path))) writer = SummaryWriter(log_dir + "/tensorboard") # write logs file_handler = logging.FileHandler(osp.join(log_dir, 'train.log')) file_handler.setLevel(logging.DEBUG) file_handler.setFormatter(logging.Formatter('%(levelname)s:%(asctime)s: %(message)s')) logger.addHandler(file_handler) batch_size = config.get('batch_size', 10) device = config.get('device', 'cpu') epochs = config.get('epochs', 1000) save_freq = config.get('save_freq', 20) train_path = config.get('train_data', None) val_path = config.get('val_data', None) train_list, val_list = get_data_path_list(train_path, val_path) train_dataloader = build_dataloader(train_list, batch_size=batch_size, num_workers=8, dataset_config=config.get('dataset_params', {}), device=device) val_dataloader = build_dataloader(val_list, batch_size=batch_size, validation=True, num_workers=2, device=device, dataset_config=config.get('dataset_params', {})) model = build_model(model_params=config['model_params'] or {}) scheduler_params = { "max_lr": float(config['optimizer_params'].get('lr', 5e-4)), "pct_start": float(config['optimizer_params'].get('pct_start', 0.0)), "epochs": epochs, "steps_per_epoch": len(train_dataloader), } model.to(device) optimizer, scheduler = build_optimizer( {"params": model.parameters(), "optimizer_params":{}, "scheduler_params": scheduler_params}) blank_index = train_dataloader.dataset.text_cleaner.word_index_dictionary[" "] # get blank index criterion = build_criterion(critic_params={ 'ctc': {'blank': blank_index}, }) trainer = Trainer(model=model, criterion=criterion, optimizer=optimizer, scheduler=scheduler, device=device, train_dataloader=train_dataloader, val_dataloader=val_dataloader, logger=logger) if config.get('pretrained_model', '') != '': trainer.load_checkpoint(config['pretrained_model'], load_only_params=config.get('load_only_params', True)) for epoch in range(1, epochs+1): train_results = trainer._train_epoch() eval_results = trainer._eval_epoch() results = train_results.copy() results.update(eval_results) logger.info('--- epoch %d ---' % epoch) for key, value in results.items(): if isinstance(value, float): logger.info('%-15s: %.4f' % (key, value)) writer.add_scalar(key, value, epoch) else: for v in value: writer.add_figure('eval_attn', plot_image(v), epoch) if (epoch % save_freq) == 0: trainer.save_checkpoint(osp.join(log_dir, 'epoch_%05d.pth' % epoch)) return 0 if __name__=="__main__": main()