# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ GPT components for the NeMo Models tutorial. This module contains the neural network components used in the tutorial 01_NeMo_Models.ipynb """ import math from typing import Optional import torch import torch.nn as nn from torch.nn import functional as F from nemo.core import NeuralModule, typecheck from nemo.core.neural_types import EmbeddedTextType, EncodedRepresentation, Index, LogitsType, NeuralType from nemo.core.neural_types.elements import * # Custom Element Types class AttentionType(EncodedRepresentation): """Basic Attention Element Type""" class SelfAttentionType(AttentionType): """Self Attention Element Type""" class CausalSelfAttentionType(SelfAttentionType): """Causal Self Attention Element Type""" # Neural Network Modules (not NeMo neural modules) class CausalSelfAttention(nn.Module): """ A vanilla multi-head masked self-attention layer with a projection at the end. It is possible to use torch.nn.MultiheadAttention here but I am including an explicit implementation here to show that there is nothing too scary here. """ def __init__(self, n_embd, block_size, n_head, attn_pdrop, resid_pdrop): super().__init__() assert n_embd % n_head == 0 self.n_head = n_head # key, query, value projections for all heads self.key = nn.Linear(n_embd, n_embd) self.query = nn.Linear(n_embd, n_embd) self.value = nn.Linear(n_embd, n_embd) # regularization self.attn_drop = nn.Dropout(attn_pdrop) self.resid_drop = nn.Dropout(resid_pdrop) # output projection self.proj = nn.Linear(n_embd, n_embd) # causal mask to ensure that attention is only applied to the left in the input sequence self.register_buffer("mask", torch.tril(torch.ones(block_size, block_size)).view(1, 1, block_size, block_size)) def forward(self, x, layer_past=None): B, T, C = x.size() # calculate query, key, values for all heads in batch and move head forward to be the batch dim k = self.key(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) q = self.query(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) v = self.value(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) # causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T) att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) att = att.masked_fill(self.mask[:, :, :T, :T] == 0, float('-inf')) att = F.softmax(att, dim=-1) att = self.attn_drop(att) y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs) y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side # output projection y = self.resid_drop(self.proj(y)) return y class Block(nn.Module): """an unassuming Transformer block""" def __init__(self, n_embd, block_size, n_head, attn_pdrop, resid_pdrop): super().__init__() self.ln1 = nn.LayerNorm(n_embd) self.ln2 = nn.LayerNorm(n_embd) self.attn = CausalSelfAttention(n_embd, block_size, n_head, attn_pdrop, resid_pdrop) self.mlp = nn.Sequential( nn.Linear(n_embd, 4 * n_embd), nn.GELU(), nn.Linear(4 * n_embd, n_embd), nn.Dropout(resid_pdrop), ) def forward(self, x): x = x + self.attn(self.ln1(x)) x = x + self.mlp(self.ln2(x)) return x # NeMo Neural Modules class GPTEmbedding(NeuralModule): def __init__(self, vocab_size: int, n_embd: int, block_size: int, embd_pdrop: float = 0.0): super().__init__() # input embedding stem: drop(content + position) self.tok_emb = nn.Embedding(vocab_size, n_embd) self.pos_emb = nn.Parameter(torch.zeros(1, block_size, n_embd)) self.drop = nn.Dropout(embd_pdrop) @typecheck() def forward(self, idx): b, t = idx.size() # forward the GPT model token_embeddings = self.tok_emb(idx) # each index maps to a (learnable) vector position_embeddings = self.pos_emb[:, :t, :] # each position maps to a (learnable) vector x = self.drop(token_embeddings + position_embeddings) return x @property def input_types(self): return {'idx': NeuralType(('B', 'T'), Index())} @property def output_types(self): return {'embeddings': NeuralType(('B', 'T', 'C'), EmbeddedTextType())} class GPTTransformerEncoder(NeuralModule): def __init__( self, n_embd: int, block_size: int, n_head: int, n_layer: int, attn_pdrop: float = 0.0, resid_pdrop: float = 0.0, ): super().__init__() self.blocks = nn.Sequential( *[Block(n_embd, block_size, n_head, attn_pdrop, resid_pdrop) for _ in range(n_layer)] ) @typecheck() def forward(self, embed): return self.blocks(embed) @property def input_types(self): return {'embed': NeuralType(('B', 'T', 'C'), EmbeddedTextType())} @property def output_types(self): return {'encoding': NeuralType(('B', 'T', 'C'), CausalSelfAttentionType())} class GPTDecoder(NeuralModule): def __init__(self, n_embd: int, vocab_size: int): super().__init__() self.ln_f = nn.LayerNorm(n_embd) self.head = nn.Linear(n_embd, vocab_size, bias=False) # no need for extra bias due to one in ln_f @typecheck() def forward(self, encoding): x = self.ln_f(encoding) logits = self.head(x) return logits @property def input_types(self): return {'encoding': NeuralType(('B', 'T', 'C'), EncodedRepresentation())} @property def output_types(self): return {'logits': NeuralType(('B', 'T', 'C'), LogitsType())}