--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - ag_news metrics: - accuracy model-index: - name: N_distilbert_agnews_padding100model results: - task: name: Text Classification type: text-classification dataset: name: ag_news type: ag_news config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.9452631578947368 --- # N_distilbert_agnews_padding100model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the ag_news dataset. It achieves the following results on the evaluation set: - Loss: 0.6461 - Accuracy: 0.9453 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:--------:| | 0.1812 | 1.0 | 7500 | 0.1853 | 0.9424 | | 0.1417 | 2.0 | 15000 | 0.1940 | 0.9437 | | 0.1201 | 3.0 | 22500 | 0.2239 | 0.9425 | | 0.0895 | 4.0 | 30000 | 0.2896 | 0.9422 | | 0.0604 | 5.0 | 37500 | 0.2957 | 0.9401 | | 0.0471 | 6.0 | 45000 | 0.3845 | 0.9389 | | 0.032 | 7.0 | 52500 | 0.4266 | 0.9393 | | 0.0284 | 8.0 | 60000 | 0.4621 | 0.9420 | | 0.0211 | 9.0 | 67500 | 0.4691 | 0.9384 | | 0.0158 | 10.0 | 75000 | 0.4800 | 0.9417 | | 0.0179 | 11.0 | 82500 | 0.5048 | 0.9422 | | 0.0105 | 12.0 | 90000 | 0.4962 | 0.9453 | | 0.0102 | 13.0 | 97500 | 0.5280 | 0.9437 | | 0.0039 | 14.0 | 105000 | 0.5401 | 0.9442 | | 0.0037 | 15.0 | 112500 | 0.5675 | 0.9441 | | 0.0052 | 16.0 | 120000 | 0.5934 | 0.9454 | | 0.003 | 17.0 | 127500 | 0.6308 | 0.9426 | | 0.0014 | 18.0 | 135000 | 0.6194 | 0.9436 | | 0.0007 | 19.0 | 142500 | 0.6454 | 0.945 | | 0.0004 | 20.0 | 150000 | 0.6461 | 0.9453 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3