--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer datasets: - ag_news metrics: - accuracy model-index: - name: N_bert_agnews_padding60model results: - task: name: Text Classification type: text-classification dataset: name: ag_news type: ag_news config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.9477631578947369 --- # N_bert_agnews_padding60model This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the ag_news dataset. It achieves the following results on the evaluation set: - Loss: 0.5465 - Accuracy: 0.9478 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:--------:| | 0.1768 | 1.0 | 7500 | 0.1912 | 0.9447 | | 0.1428 | 2.0 | 15000 | 0.2136 | 0.9397 | | 0.1172 | 3.0 | 22500 | 0.2275 | 0.9418 | | 0.08 | 4.0 | 30000 | 0.2665 | 0.9446 | | 0.0564 | 5.0 | 37500 | 0.3084 | 0.9462 | | 0.0368 | 6.0 | 45000 | 0.3503 | 0.9442 | | 0.0381 | 7.0 | 52500 | 0.3898 | 0.9418 | | 0.0279 | 8.0 | 60000 | 0.4233 | 0.9418 | | 0.0177 | 9.0 | 67500 | 0.4515 | 0.9436 | | 0.012 | 10.0 | 75000 | 0.4573 | 0.9451 | | 0.0186 | 11.0 | 82500 | 0.4427 | 0.9455 | | 0.0124 | 12.0 | 90000 | 0.4840 | 0.9424 | | 0.0074 | 13.0 | 97500 | 0.4665 | 0.9459 | | 0.0077 | 14.0 | 105000 | 0.5069 | 0.9461 | | 0.0031 | 15.0 | 112500 | 0.5102 | 0.9443 | | 0.0028 | 16.0 | 120000 | 0.5251 | 0.9466 | | 0.0021 | 17.0 | 127500 | 0.5325 | 0.9464 | | 0.0024 | 18.0 | 135000 | 0.5260 | 0.9483 | | 0.0004 | 19.0 | 142500 | 0.5443 | 0.9472 | | 0.0011 | 20.0 | 150000 | 0.5465 | 0.9478 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3