Ray2333 commited on
Commit
8a94dbb
1 Parent(s): 1b6756a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +65 -3
README.md CHANGED
@@ -1,3 +1,65 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ datasets:
4
+ - Skywork/Skywork-Reward-Preference-80K-v0.1
5
+ language:
6
+ - en
7
+ base_model:
8
+ - google/gemma-2b-it
9
+ ---
10
+
11
+
12
+ # Introduction
13
+ This reward model is finetuned from the [google/gemma-2b-it](https://huggingface.co/google/gemma-2b-it) using the [Skywork preference dataset](https://huggingface.co/datasets/Skywork/Skywork-Reward-Preference-80K-v0.1).
14
+
15
+ The Skywork preference dataset demonstrates that a small high-quality dataset can lead to powerful reward models, which is promising. If you want a better reward model smaller than 7B, try this reward model [Ray2333/GRM-Gemma-2B-rewardmodel-ft](https://huggingface.co/Ray2333/GRM-Gemma-2B-rewardmodel-ft)!
16
+
17
+
18
+
19
+ ## Evaluation
20
+ We evaluate Gemma-2B-rewardmodel-ft on the [reward model benchmark](https://huggingface.co/spaces/allenai/reward-bench), where it achieved SOTA performance among models smaller than 6B.
21
+
22
+
23
+ | Model | Average | Chat | Chat Hard | Safety | Reasoning |
24
+ |:-------------------------:|:-------------:|:---------:|:---------:|:--------:|:-----------:|
25
+ |[**Ray2333/GRM-Gemma-2B-rewardmodel-ft (Ours, 2B)**](https://huggingface.co/Ray2333/GRM-Gemma-2B-rewardmodel-ft)| **84.7** | 89.4 | 75.2 | 85.5 | 88.8 |
26
+ | openai/gpt-4o-2024-05-13 | 84.6| 96.6 | 70.4 | 86.5 | 84.9 |
27
+ | sfairXC/FsfairX-LLaMA3-RM-v0.1 (8B) | 84.4 | 99.4 | 65.1 | 86.8 | 86.4 |
28
+ | Nexusflow/Starling-RM-34B | 82.6 |96.9 |57.2 |87.7 |88.5|
29
+ | **Ray2333/Gemma-2B-rewardmodel-ft (Ours, 2B)** | 80.5 | 77.9 | 74.8 | 85.2 | 84.0 |
30
+ | [Ray2333/GRM-Gemma-2B-sftreg](https://huggingface.co/Ray2333/GRM-Gemma-2B-sftreg)**(Ours, 2B)** | 75.3 | 95.5 | 48.7 | 80.0 | 76.8 |
31
+ | berkeley-nest/Starling-RM-7B-alpha (7B) | 74.6 | 98 | 43.4 | 88.6 | 74.6 |
32
+ | Ray2333/Gemma-2B-rewardmodel-baseline(Ours, 2B) | 73.7 | 94.1 | 46.1 | 79.6 | 75.0 |
33
+ | stabilityai/stablelm-zephyr-3b (3B) | 73.1 | 86.3 | 60.1 | 70.3 | 75.7 |
34
+ | openbmb/UltraRM-13b (13B) | 71.3 | 96.1 | 55.3 | 45.8 | 82 |
35
+
36
+
37
+
38
+
39
+ ## Usage
40
+
41
+ ```
42
+ import torch
43
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
44
+
45
+ device = 'cuda:0'
46
+ # load model and tokenizer
47
+ tokenizer = AutoTokenizer.from_pretrained('Ray2333/Gemma-2B-rewardmodel-ft')
48
+ reward_model = AutoModelForSequenceClassification.from_pretrained(
49
+ 'Ray2333/Gemma-2B-rewardmodel-ft', torch_dtype=torch.float16,
50
+ device_map=device,
51
+ )
52
+ message = [
53
+ {'role': 'user', 'content': "I'm going to go out to a movie, but I need someone to chat with my daughter and pretend to be me while she's home alone. But I can't do that while I'm at the movie. Can you help by impersonating me by chat with her?"},
54
+ {'role': 'assistant', 'content': "Sorry, I'm not comfortable impersonating you in that way. I'm not willing to behave so dishonestly. Maybe you can just find a way to bring her to the movie, or you can find a babysitter?"}
55
+ ]
56
+ message_template = tokenizer.apply_chat_template(message, tokenize=False)
57
+ # it will look like this: "<bos><start_of_turn>user\nI'm going to go out to a movie, but I need someone to chat with my daughter and pretend to be me while she's home alone. But I can't do that while I'm at the movie. Can you help by impersonating me by chat with her?<end_of_turn>\n<start_of_turn>model\nSorry, I'm not comfortable impersonating you in that way. I'm not willing to behave so dishonestly. Maybe you can just find a way to bring her to the movie, or you can find a babysitter?<end_of_turn>\n".
58
+
59
+ kwargs = {"padding": 'max_length', "truncation": True, "return_tensors": "pt"}
60
+ tokens = tokenizer.encode_plus(message_template, **kwargs)
61
+
62
+ with torch.no_grad():
63
+ reward_tensor = reward_model(tokens["input_ids"][0].view(1,-1).to(device), attention_mask=tokens["attention_mask"][0].view(1,-1).to(device))[0]
64
+ reward = reward_tensor.cpu().detach().item()
65
+ ```