Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,65 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
datasets:
|
4 |
+
- Skywork/Skywork-Reward-Preference-80K-v0.1
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
base_model:
|
8 |
+
- google/gemma-2b-it
|
9 |
+
---
|
10 |
+
|
11 |
+
|
12 |
+
# Introduction
|
13 |
+
This reward model is finetuned from the [google/gemma-2b-it](https://huggingface.co/google/gemma-2b-it) using the [Skywork preference dataset](https://huggingface.co/datasets/Skywork/Skywork-Reward-Preference-80K-v0.1).
|
14 |
+
|
15 |
+
The Skywork preference dataset demonstrates that a small high-quality dataset can lead to powerful reward models, which is promising. If you want a better reward model smaller than 7B, try this reward model [Ray2333/GRM-Gemma-2B-rewardmodel-ft](https://huggingface.co/Ray2333/GRM-Gemma-2B-rewardmodel-ft)!
|
16 |
+
|
17 |
+
|
18 |
+
|
19 |
+
## Evaluation
|
20 |
+
We evaluate Gemma-2B-rewardmodel-ft on the [reward model benchmark](https://huggingface.co/spaces/allenai/reward-bench), where it achieved SOTA performance among models smaller than 6B.
|
21 |
+
|
22 |
+
|
23 |
+
| Model | Average | Chat | Chat Hard | Safety | Reasoning |
|
24 |
+
|:-------------------------:|:-------------:|:---------:|:---------:|:--------:|:-----------:|
|
25 |
+
|[**Ray2333/GRM-Gemma-2B-rewardmodel-ft (Ours, 2B)**](https://huggingface.co/Ray2333/GRM-Gemma-2B-rewardmodel-ft)| **84.7** | 89.4 | 75.2 | 85.5 | 88.8 |
|
26 |
+
| openai/gpt-4o-2024-05-13 | 84.6| 96.6 | 70.4 | 86.5 | 84.9 |
|
27 |
+
| sfairXC/FsfairX-LLaMA3-RM-v0.1 (8B) | 84.4 | 99.4 | 65.1 | 86.8 | 86.4 |
|
28 |
+
| Nexusflow/Starling-RM-34B | 82.6 |96.9 |57.2 |87.7 |88.5|
|
29 |
+
| **Ray2333/Gemma-2B-rewardmodel-ft (Ours, 2B)** | 80.5 | 77.9 | 74.8 | 85.2 | 84.0 |
|
30 |
+
| [Ray2333/GRM-Gemma-2B-sftreg](https://huggingface.co/Ray2333/GRM-Gemma-2B-sftreg)**(Ours, 2B)** | 75.3 | 95.5 | 48.7 | 80.0 | 76.8 |
|
31 |
+
| berkeley-nest/Starling-RM-7B-alpha (7B) | 74.6 | 98 | 43.4 | 88.6 | 74.6 |
|
32 |
+
| Ray2333/Gemma-2B-rewardmodel-baseline(Ours, 2B) | 73.7 | 94.1 | 46.1 | 79.6 | 75.0 |
|
33 |
+
| stabilityai/stablelm-zephyr-3b (3B) | 73.1 | 86.3 | 60.1 | 70.3 | 75.7 |
|
34 |
+
| openbmb/UltraRM-13b (13B) | 71.3 | 96.1 | 55.3 | 45.8 | 82 |
|
35 |
+
|
36 |
+
|
37 |
+
|
38 |
+
|
39 |
+
## Usage
|
40 |
+
|
41 |
+
```
|
42 |
+
import torch
|
43 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
44 |
+
|
45 |
+
device = 'cuda:0'
|
46 |
+
# load model and tokenizer
|
47 |
+
tokenizer = AutoTokenizer.from_pretrained('Ray2333/Gemma-2B-rewardmodel-ft')
|
48 |
+
reward_model = AutoModelForSequenceClassification.from_pretrained(
|
49 |
+
'Ray2333/Gemma-2B-rewardmodel-ft', torch_dtype=torch.float16,
|
50 |
+
device_map=device,
|
51 |
+
)
|
52 |
+
message = [
|
53 |
+
{'role': 'user', 'content': "I'm going to go out to a movie, but I need someone to chat with my daughter and pretend to be me while she's home alone. But I can't do that while I'm at the movie. Can you help by impersonating me by chat with her?"},
|
54 |
+
{'role': 'assistant', 'content': "Sorry, I'm not comfortable impersonating you in that way. I'm not willing to behave so dishonestly. Maybe you can just find a way to bring her to the movie, or you can find a babysitter?"}
|
55 |
+
]
|
56 |
+
message_template = tokenizer.apply_chat_template(message, tokenize=False)
|
57 |
+
# it will look like this: "<bos><start_of_turn>user\nI'm going to go out to a movie, but I need someone to chat with my daughter and pretend to be me while she's home alone. But I can't do that while I'm at the movie. Can you help by impersonating me by chat with her?<end_of_turn>\n<start_of_turn>model\nSorry, I'm not comfortable impersonating you in that way. I'm not willing to behave so dishonestly. Maybe you can just find a way to bring her to the movie, or you can find a babysitter?<end_of_turn>\n".
|
58 |
+
|
59 |
+
kwargs = {"padding": 'max_length', "truncation": True, "return_tensors": "pt"}
|
60 |
+
tokens = tokenizer.encode_plus(message_template, **kwargs)
|
61 |
+
|
62 |
+
with torch.no_grad():
|
63 |
+
reward_tensor = reward_model(tokens["input_ids"][0].view(1,-1).to(device), attention_mask=tokens["attention_mask"][0].view(1,-1).to(device))[0]
|
64 |
+
reward = reward_tensor.cpu().detach().item()
|
65 |
+
```
|