--- license: apache-2.0 language: - en pipeline_tag: text-classification tags: - Sentiment Analysis - Language Models --- ## Model Architecture - **Embedding Layer**: Converts input text into dense vectors. - **CNN Layers**: Extracts features from text sequences. - **RNN, LSTM, and GRU Layers**: Capture temporal dependencies in text. - **Dense Layers**: Classify text into sentiment categories. ## Usage You can use this model for sentiment analysis on text data. Here's a sample code to load and use the model: ```python from huggingface_hub import from_pretrained_keras import re import numpy as np from tensorflow.keras.preprocessing.sequence import pad_sequences # Load model model = from_pretrained_keras("Ravinthiran/DistilSenti-Net42M") # Example prediction function def predict_sentiment(text, model, tokenizer, label_encoder): text = text.lower() text = re.sub(r'[^\w\s]', '', text) sequence = tokenizer.texts_to_sequences([text]) padded_sequence = pad_sequences(sequence, maxlen=100) pred = model.predict(padded_sequence) sentiment = label_encoder.inverse_transform(pred.argmax(axis=1)) sentiment_score = pred[0] return sentiment[0], sentiment_score # Example usage new_text = "I recently started a new fitness program at a local wellness center, and it has been an incredibly positive experience." predicted_sentiment, sentiment_score = predict_sentiment(new_text, model, tokenizer, label_encoder) print(f"Predicted Sentiment: {predicted_sentiment}") print(f"Sentiment Scores: {sentiment_score}")