--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - sinhala_asr metrics: - wer model-index: - name: whisper-tiny-sinhala-20k results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: sinhala_asr type: sinhala_asr config: default split: test args: default metrics: - name: Wer type: wer value: 92.99603723159156 --- # whisper-tiny-sinhala-20k This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the sinhala_asr dataset. It achieves the following results on the evaluation set: - Loss: 0.2433 - Wer: 92.9960 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4207 | 0.4 | 1000 | 0.3978 | 221.9058 | | 0.2966 | 0.8 | 2000 | 0.3009 | 136.3423 | | 0.226 | 1.2 | 3000 | 0.2661 | 97.6638 | | 0.2224 | 1.6 | 4000 | 0.2510 | 92.3279 | | 0.2034 | 2.0 | 5000 | 0.2433 | 92.9960 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.15.0