Test Commit
Browse files- .gitattributes +1 -0
- README.md +36 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 178.49 +/- 17.51
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb9ff5c95f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb9ff5c9680>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb9ff5c9710>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb9ff5c97a0>", "_build": "<function ActorCriticPolicy._build at 0x7fb9ff5c9830>", "forward": "<function ActorCriticPolicy.forward at 0x7fb9ff5c98c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb9ff5c9950>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb9ff5c99e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb9ff5c9a70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb9ff5c9b00>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb9ff5c9b90>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fb9ff66d180>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1655592388.092773, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAADfIbvgqNF7ts5rm8A7HCucAcFDyZCao6AACAPwAAgD8aPn69JYqrPyBQHb8TLre+pZm6PB4jK70AAAAAAAAAAJp/GbzDtRO4IACUOm9Emjasgo86rx2xuQAAgD8AAIA/s28Avm3MqT9y5N++0PB4vj4sGr5uZCq+AAAAAAAAAACAbT8+ED6zP5X7zD7KXSO+BEpiPlql9D0AAAAAAAAAAJqa0L0LBr09O4hHvt1NYL7c6aC9xcHkvQAAAAAAAAAAGhlgPXuCyjsty009NPw9vqxDpLyOQTO7AAAAAAAAAADNN4g9XPMYupRpvbvxZ4A07h49u5IkALQAAIA/AACAP/Oqqj6PMyA/+A3/vWK/Wb7/kJ09AM9xOwAAAAAAAAAAzaq4POxhmrm4U9o6M0fmNYpNDjvTpfy5AACAPwAAgD/m1We9wzFMuk6zhDpL9Cc10raPuvjFlbkAAIA/AACAP1bngj5uhY4/tE+zO7mybr6TDCk+uZEqvgAAAAAAAAAAGpQuvjkLoj6F+gw8YyhUvjp+47z8h6e9AAAAAAAAAACrKK++FWvFvSifx7oF9we6fUTtPlI9LzoAAIA/AACAP4bJIb7droM/PC3LvQ24sr79c/+9iki6vAAAAAAAAAAAZpRVvDt+mD8CrfS7NlhCvg4ot7y9hNI9AAAAAAAAAACUdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMISicSTDWsX0CUhpRSlIwBbJRN6AOMAXSUR0CFRLgMtseodX2UKGgGaAloD0MI9dvXgXNJUkCUhpRSlGgVTegDaBZHQIVZBgXuVop1fZQoaAZoCWgPQwgUXKyowfFdQJSGlFKUaBVN6ANoFkdAhVv0WEbo83V9lChoBmgJaA9DCM0Bgjl6XBzAlIaUUpRoFU0FAWgWR0CFXj9zfaYedX2UKGgGaAloD0MI7ginBa+KYkCUhpRSlGgVTegDaBZHQIVeyAtnPE91fZQoaAZoCWgPQwgGEalpFwdhQJSGlFKUaBVN6ANoFkdAhWJ0wJw84nV9lChoBmgJaA9DCK1tisdFQFtAlIaUUpRoFU3oA2gWR0CFZhVinYQKdX2UKGgGaAloD0MIjzNN2H4RVECUhpRSlGgVTegDaBZHQIV5JuKoAGV1fZQoaAZoCWgPQwisxhLWxpAqwJSGlFKUaBVL6mgWR0CFeTZXdTHbdX2UKGgGaAloD0MIREyJJHrFVkCUhpRSlGgVTegDaBZHQIWEx7PY4AF1fZQoaAZoCWgPQwiVSKKXUZg/wJSGlFKUaBVNAAFoFkdAhYfHRb8m8nV9lChoBmgJaA9DCIxK6gQ0fWRAlIaUUpRoFU3oA2gWR0CFiis3AEdOdX2UKGgGaAloD0MIvyuC/600FkCUhpRSlGgVTegDaBZHQIWKXg1m8NB1fZQoaAZoCWgPQwjde7jkuC1cQJSGlFKUaBVN6ANoFkdAhY3schkiEHV9lChoBmgJaA9DCBv2e2KddmFAlIaUUpRoFU3oA2gWR0CFoSAsCkoGdX2UKGgGaAloD0MICqAYWbIpZ0CUhpRSlGgVTakCaBZHQIWj2YtxuKp1fZQoaAZoCWgPQwhqwvaTsYdgQJSGlFKUaBVN6ANoFkdAhabUhmoR7XV9lChoBmgJaA9DCEc82c2MFEDAlIaUUpRoFUvuaBZHQIWoJ3NcGC91fZQoaAZoCWgPQwjV7IFWYOBbQJSGlFKUaBVN6ANoFkdAhajokAxSHnV9lChoBmgJaA9DCC18fa1LQ1ZAlIaUUpRoFU3oA2gWR0CF4TaN+9amdX2UKGgGaAloD0MI5x2n6MiiYsCUhpRSlGgVTYICaBZHQIXuqn752yN1fZQoaAZoCWgPQwiaz7nb9fRdQJSGlFKUaBVN6ANoFkdAhgNMXSBsh3V9lChoBmgJaA9DCK6bUl6rU2BAlIaUUpRoFU3oA2gWR0CGBU7T2FnJdX2UKGgGaAloD0MI5J6u7lhKYUCUhpRSlGgVTegDaBZHQIYFwfp2U0N1fZQoaAZoCWgPQwgsnnqkwcFZQJSGlFKUaBVN6ANoFkdAhgkNgKF7D3V9lChoBmgJaA9DCGiXb31YWF9AlIaUUpRoFU3oA2gWR0CGIOPuogmrdX2UKGgGaAloD0MIHqhTHl3dYUCUhpRSlGgVTegDaBZHQIYtm9DhLoR1fZQoaAZoCWgPQwisyr4rgjpiQJSGlFKUaBVN6ANoFkdAhjDjmSyMUHV9lChoBmgJaA9DCCKOdXGbg2BAlIaUUpRoFU3oA2gWR0CGM5jp9qk/dX2UKGgGaAloD0MI6C6JsyJJW0CUhpRSlGgVTegDaBZHQIY3kaKk2xZ1fZQoaAZoCWgPQwjSNv5EZZxUwJSGlFKUaBVNGQFoFkdAhkgxFZxJd3V9lChoBmgJaA9DCB4X1SIiz2BAlIaUUpRoFU3oA2gWR0CGTGUKRdQgdX2UKGgGaAloD0MIK/nYXSCIYECUhpRSlGgVTegDaBZHQIZPUkv9LpR1fZQoaAZoCWgPQwiZZrrXSWdOQJSGlFKUaBVN6ANoFkdAhlJjawljVnV9lChoBmgJaA9DCDmAft+/fWBAlIaUUpRoFU3oA2gWR0CGU+2/i5uqdX2UKGgGaAloD0MI6zao/dbOVkCUhpRSlGgVTegDaBZHQIZUwvg3tKJ1fZQoaAZoCWgPQwhWKNL9nBIqQJSGlFKUaBVNJQFoFkdAhlqyLqD9O3V9lChoBmgJaA9DCA4V4/zNCWVAlIaUUpRoFU2tAmgWR0CGZaTTvy9VdX2UKGgGaAloD0MI8/+qI0f6HMCUhpRSlGgVTegDaBZHQIZvA2uPmxN1fZQoaAZoCWgPQwgBbatZZ5Q3wJSGlFKUaBVNDAFoFkdAhpub/Ot4iXV9lChoBmgJaA9DCIMWEjC63BHAlIaUUpRoFU1GAWgWR0CGnOCo0hvBdX2UKGgGaAloD0MIyk+qfTqeUkCUhpRSlGgVTegDaBZHQIah8v4/NaB1fZQoaAZoCWgPQwiPU3QkF4BiQJSGlFKUaBVN6ANoFkdAhraG34Kx93V9lChoBmgJaA9DCNB+pIgM22BAlIaUUpRoFU3oA2gWR0CGuLChN/OMdX2UKGgGaAloD0MIRKURM/vXX0CUhpRSlGgVTegDaBZHQIa8rgjyFwl1fZQoaAZoCWgPQwjY74l1qhNbQJSGlFKUaBVN6ANoFkdAhuUBs67ulXV9lChoBmgJaA9DCI2XbhKDxVpAlIaUUpRoFU3oA2gWR0CG6NZamoBJdX2UKGgGaAloD0MIUDV6NUBeW0CUhpRSlGgVTegDaBZHQIbwdxMnJDF1fZQoaAZoCWgPQwhE+YIWEk9nQJSGlFKUaBVN3gJoFkdAhvnw3PzFuXV9lChoBmgJaA9DCPWeymlPLFtAlIaUUpRoFU3oA2gWR0CHB53/Pw/gdX2UKGgGaAloD0MIt0PDYtSMV0CUhpRSlGgVTegDaBZHQIcOgJ/oaDR1fZQoaAZoCWgPQwhIF5tWCqdaQJSGlFKUaBVN6ANoFkdAhxBe/gzguXV9lChoBmgJaA9DCAWGrG51+2BAlIaUUpRoFU3oA2gWR0CHEVy/9Hc2dX2UKGgGaAloD0MICOQSRx70MMCUhpRSlGgVTTEBaBZHQIcTrpX6qKh1fZQoaAZoCWgPQwiQMuIC0IlXQJSGlFKUaBVN6ANoFkdAhxddmQKa5XV9lChoBmgJaA9DCB/bMuAshRpAlIaUUpRoFU1ZAWgWR0CHGykhRqGldX2UKGgGaAloD0MIzNQkeEPYT0CUhpRSlGgVTegDaBZHQIclj1CgK4R1fZQoaAZoCWgPQwh6qdiY19RgQJSGlFKUaBVN6ANoFkdAh1D5w4sEq3V9lChoBmgJaA9DCDyiQnVz0lhAlIaUUpRoFU3oA2gWR0CHUf6fra/RdX2UKGgGaAloD0MIiDB+GveDXkCUhpRSlGgVTegDaBZHQIdWIbfgrH51fZQoaAZoCWgPQwhm3T8Wor1EwJSGlFKUaBVNSAFoFkdAh196IN3GGXV9lChoBmgJaA9DCAKBzqRN/F9AlIaUUpRoFU3oA2gWR0CHZ5RtxdY5dX2UKGgGaAloD0MIA9L+B9hTYUCUhpRSlGgVTegDaBZHQIdpbeGfwql1fZQoaAZoCWgPQwiYiLfOv45XQJSGlFKUaBVN6ANoFkdAh2zAm7aqTHV9lChoBmgJaA9DCJIgXAGFjjHAlIaUUpRoFU1uAWgWR0CHfIY6XBxhdX2UKGgGaAloD0MIY+yEl+CUFUCUhpRSlGgVTWMBaBZHQIeAqDdxhlV1fZQoaAZoCWgPQwhJ88e0Ni0VQJSGlFKUaBVL5WgWR0CHhE/20zCUdX2UKGgGaAloD0MIje+LS1WGZUCUhpRSlGgVTegDaBZHQIeU8tyxRl91fZQoaAZoCWgPQwjECOHRxl5WQJSGlFKUaBVN6ANoFkdAh5z46XBxgnV9lChoBmgJaA9DCNLEO8ATKGFAlIaUUpRoFU3oA2gWR0CHqKZgG8mKdX2UKGgGaAloD0MIjbPpCOBeJ0CUhpRSlGgVTSwBaBZHQIerPysjmjl1fZQoaAZoCWgPQwjWNzC5Ub5dQJSGlFKUaBVN6ANoFkdAh66eAEt/WnV9lChoBmgJaA9DCEhwI2WL/F5AlIaUUpRoFU3oA2gWR0CHsBYaHbh4dX2UKGgGaAloD0MIUKvoD82OYECUhpRSlGgVTegDaBZHQIew+NR3u/l1fZQoaAZoCWgPQwiOklfnGB5bQJSGlFKUaBVN6ANoFkdAh7YxISUTtnV9lChoBmgJaA9DCN7n+GhxLF9AlIaUUpRoFU3oA2gWR0CHuaOQQtjDdX2UKGgGaAloD0MIuFuSA/Y0YECUhpRSlGgVTegDaBZHQIfCrlq8Djl1fZQoaAZoCWgPQwju7ZbkgB0WQJSGlFKUaBVNTwFoFkdAh8RcSoOx0XV9lChoBmgJaA9DCET5ghYS2DRAlIaUUpRoFUvKaBZHQIfFnEuQIUt1fZQoaAZoCWgPQwhR24ZREPQxwJSGlFKUaBVL/GgWR0CHxtvRZ2ZBdX2UKGgGaAloD0MIEB/Y8V+dUUCUhpRSlGgVTegDaBZHQIft96w+t8x1fZQoaAZoCWgPQwggJXZtb0clwJSGlFKUaBVNRwFoFkdAh/DCG34KyHV9lChoBmgJaA9DCJNWfEPhiVpAlIaUUpRoFU3oA2gWR0CH+Yam4y44dX2UKGgGaAloD0MIqBjnb0KhDUCUhpRSlGgVTT0BaBZHQIf/pdB0ITp1fZQoaAZoCWgPQwh2G9R+a/pYQJSGlFKUaBVN6ANoFkdAiAEIBaLXMHV9lChoBmgJaA9DCEXY8PRKO1hAlIaUUpRoFU3oA2gWR0CIBfPu5SWJdX2UKGgGaAloD0MIi/z6ITbbXUCUhpRSlGgVTegDaBZHQIgXtVLi++N1fZQoaAZoCWgPQwjH2t/ZHlUyQJSGlFKUaBVL/mgWR0CIGRzg/C66dX2UKGgGaAloD0MI61T5npFoYkCUhpRSlGgVTegDaBZHQIgcOoegctJ1fZQoaAZoCWgPQwik3lM57SFjQJSGlFKUaBVN6ANoFkdAiDRZavA443V9lChoBmgJaA9DCM2RlV8GvVZAlIaUUpRoFU3oA2gWR0CIVEpLEk0KdX2UKGgGaAloD0MIOLwgIrVNY0CUhpRSlGgVTegDaBZHQIhXNpj+aSd1fZQoaAZoCWgPQwgZARWOIPVZQJSGlFKUaBVN6ANoFkdAiF5kXcgyM3V9lChoBmgJaA9DCE4On3Qi/TFAlIaUUpRoFU01AWgWR0CIZQiyIHkcdX2UKGgGaAloD0MIVvXyO81mY0CUhpRSlGgVTegDaBZHQIhvZMg2ZRd1fZQoaAZoCWgPQwiQMuICUA5jQJSGlFKUaBVN6ANoFkdAiHGOafBeonV9lChoBmgJaA9DCApkdha9CWFAlIaUUpRoFU3oA2gWR0CIcwMo+fRNdX2UKGgGaAloD0MIaw4QzNH/XkCUhpRSlGgVTegDaBZHQIh0fB7/n4h1fZQoaAZoCWgPQwhYqDXNO6doQJSGlFKUaBVN/QJoFkdAiHXMvysjmnV9lChoBmgJaA9DCHVVoBaD0GJAlIaUUpRoFU3oA2gWR0CId1sNUfgadWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ea2b25f40b88c2ab965412e144892b95bc18cf038b4a48c78cb5795a45960e4d
|
3 |
+
size 144147
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fb9ff5c95f0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb9ff5c9680>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb9ff5c9710>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb9ff5c97a0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fb9ff5c9830>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fb9ff5c98c0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb9ff5c9950>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fb9ff5c99e0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb9ff5c9a70>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb9ff5c9b00>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb9ff5c9b90>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fb9ff66d180>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1655592388.092773,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAADfIbvgqNF7ts5rm8A7HCucAcFDyZCao6AACAPwAAgD8aPn69JYqrPyBQHb8TLre+pZm6PB4jK70AAAAAAAAAAJp/GbzDtRO4IACUOm9Emjasgo86rx2xuQAAgD8AAIA/s28Avm3MqT9y5N++0PB4vj4sGr5uZCq+AAAAAAAAAACAbT8+ED6zP5X7zD7KXSO+BEpiPlql9D0AAAAAAAAAAJqa0L0LBr09O4hHvt1NYL7c6aC9xcHkvQAAAAAAAAAAGhlgPXuCyjsty009NPw9vqxDpLyOQTO7AAAAAAAAAADNN4g9XPMYupRpvbvxZ4A07h49u5IkALQAAIA/AACAP/Oqqj6PMyA/+A3/vWK/Wb7/kJ09AM9xOwAAAAAAAAAAzaq4POxhmrm4U9o6M0fmNYpNDjvTpfy5AACAPwAAgD/m1We9wzFMuk6zhDpL9Cc10raPuvjFlbkAAIA/AACAP1bngj5uhY4/tE+zO7mybr6TDCk+uZEqvgAAAAAAAAAAGpQuvjkLoj6F+gw8YyhUvjp+47z8h6e9AAAAAAAAAACrKK++FWvFvSifx7oF9we6fUTtPlI9LzoAAIA/AACAP4bJIb7droM/PC3LvQ24sr79c/+9iki6vAAAAAAAAAAAZpRVvDt+mD8CrfS7NlhCvg4ot7y9hNI9AAAAAAAAAACUdJRiLg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gASVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMISicSTDWsX0CUhpRSlIwBbJRN6AOMAXSUR0CFRLgMtseodX2UKGgGaAloD0MI9dvXgXNJUkCUhpRSlGgVTegDaBZHQIVZBgXuVop1fZQoaAZoCWgPQwgUXKyowfFdQJSGlFKUaBVN6ANoFkdAhVv0WEbo83V9lChoBmgJaA9DCM0Bgjl6XBzAlIaUUpRoFU0FAWgWR0CFXj9zfaYedX2UKGgGaAloD0MI7ginBa+KYkCUhpRSlGgVTegDaBZHQIVeyAtnPE91fZQoaAZoCWgPQwgGEalpFwdhQJSGlFKUaBVN6ANoFkdAhWJ0wJw84nV9lChoBmgJaA9DCK1tisdFQFtAlIaUUpRoFU3oA2gWR0CFZhVinYQKdX2UKGgGaAloD0MIjzNN2H4RVECUhpRSlGgVTegDaBZHQIV5JuKoAGV1fZQoaAZoCWgPQwisxhLWxpAqwJSGlFKUaBVL6mgWR0CFeTZXdTHbdX2UKGgGaAloD0MIREyJJHrFVkCUhpRSlGgVTegDaBZHQIWEx7PY4AF1fZQoaAZoCWgPQwiVSKKXUZg/wJSGlFKUaBVNAAFoFkdAhYfHRb8m8nV9lChoBmgJaA9DCIxK6gQ0fWRAlIaUUpRoFU3oA2gWR0CFiis3AEdOdX2UKGgGaAloD0MIvyuC/600FkCUhpRSlGgVTegDaBZHQIWKXg1m8NB1fZQoaAZoCWgPQwjde7jkuC1cQJSGlFKUaBVN6ANoFkdAhY3schkiEHV9lChoBmgJaA9DCBv2e2KddmFAlIaUUpRoFU3oA2gWR0CFoSAsCkoGdX2UKGgGaAloD0MICqAYWbIpZ0CUhpRSlGgVTakCaBZHQIWj2YtxuKp1fZQoaAZoCWgPQwhqwvaTsYdgQJSGlFKUaBVN6ANoFkdAhabUhmoR7XV9lChoBmgJaA9DCEc82c2MFEDAlIaUUpRoFUvuaBZHQIWoJ3NcGC91fZQoaAZoCWgPQwjV7IFWYOBbQJSGlFKUaBVN6ANoFkdAhajokAxSHnV9lChoBmgJaA9DCC18fa1LQ1ZAlIaUUpRoFU3oA2gWR0CF4TaN+9amdX2UKGgGaAloD0MI5x2n6MiiYsCUhpRSlGgVTYICaBZHQIXuqn752yN1fZQoaAZoCWgPQwiaz7nb9fRdQJSGlFKUaBVN6ANoFkdAhgNMXSBsh3V9lChoBmgJaA9DCK6bUl6rU2BAlIaUUpRoFU3oA2gWR0CGBU7T2FnJdX2UKGgGaAloD0MI5J6u7lhKYUCUhpRSlGgVTegDaBZHQIYFwfp2U0N1fZQoaAZoCWgPQwgsnnqkwcFZQJSGlFKUaBVN6ANoFkdAhgkNgKF7D3V9lChoBmgJaA9DCGiXb31YWF9AlIaUUpRoFU3oA2gWR0CGIOPuogmrdX2UKGgGaAloD0MIHqhTHl3dYUCUhpRSlGgVTegDaBZHQIYtm9DhLoR1fZQoaAZoCWgPQwisyr4rgjpiQJSGlFKUaBVN6ANoFkdAhjDjmSyMUHV9lChoBmgJaA9DCCKOdXGbg2BAlIaUUpRoFU3oA2gWR0CGM5jp9qk/dX2UKGgGaAloD0MI6C6JsyJJW0CUhpRSlGgVTegDaBZHQIY3kaKk2xZ1fZQoaAZoCWgPQwjSNv5EZZxUwJSGlFKUaBVNGQFoFkdAhkgxFZxJd3V9lChoBmgJaA9DCB4X1SIiz2BAlIaUUpRoFU3oA2gWR0CGTGUKRdQgdX2UKGgGaAloD0MIK/nYXSCIYECUhpRSlGgVTegDaBZHQIZPUkv9LpR1fZQoaAZoCWgPQwiZZrrXSWdOQJSGlFKUaBVN6ANoFkdAhlJjawljVnV9lChoBmgJaA9DCDmAft+/fWBAlIaUUpRoFU3oA2gWR0CGU+2/i5uqdX2UKGgGaAloD0MI6zao/dbOVkCUhpRSlGgVTegDaBZHQIZUwvg3tKJ1fZQoaAZoCWgPQwhWKNL9nBIqQJSGlFKUaBVNJQFoFkdAhlqyLqD9O3V9lChoBmgJaA9DCA4V4/zNCWVAlIaUUpRoFU2tAmgWR0CGZaTTvy9VdX2UKGgGaAloD0MI8/+qI0f6HMCUhpRSlGgVTegDaBZHQIZvA2uPmxN1fZQoaAZoCWgPQwgBbatZZ5Q3wJSGlFKUaBVNDAFoFkdAhpub/Ot4iXV9lChoBmgJaA9DCIMWEjC63BHAlIaUUpRoFU1GAWgWR0CGnOCo0hvBdX2UKGgGaAloD0MIyk+qfTqeUkCUhpRSlGgVTegDaBZHQIah8v4/NaB1fZQoaAZoCWgPQwiPU3QkF4BiQJSGlFKUaBVN6ANoFkdAhraG34Kx93V9lChoBmgJaA9DCNB+pIgM22BAlIaUUpRoFU3oA2gWR0CGuLChN/OMdX2UKGgGaAloD0MIRKURM/vXX0CUhpRSlGgVTegDaBZHQIa8rgjyFwl1fZQoaAZoCWgPQwjY74l1qhNbQJSGlFKUaBVN6ANoFkdAhuUBs67ulXV9lChoBmgJaA9DCI2XbhKDxVpAlIaUUpRoFU3oA2gWR0CG6NZamoBJdX2UKGgGaAloD0MIUDV6NUBeW0CUhpRSlGgVTegDaBZHQIbwdxMnJDF1fZQoaAZoCWgPQwhE+YIWEk9nQJSGlFKUaBVN3gJoFkdAhvnw3PzFuXV9lChoBmgJaA9DCPWeymlPLFtAlIaUUpRoFU3oA2gWR0CHB53/Pw/gdX2UKGgGaAloD0MIt0PDYtSMV0CUhpRSlGgVTegDaBZHQIcOgJ/oaDR1fZQoaAZoCWgPQwhIF5tWCqdaQJSGlFKUaBVN6ANoFkdAhxBe/gzguXV9lChoBmgJaA9DCAWGrG51+2BAlIaUUpRoFU3oA2gWR0CHEVy/9Hc2dX2UKGgGaAloD0MICOQSRx70MMCUhpRSlGgVTTEBaBZHQIcTrpX6qKh1fZQoaAZoCWgPQwiQMuIC0IlXQJSGlFKUaBVN6ANoFkdAhxddmQKa5XV9lChoBmgJaA9DCB/bMuAshRpAlIaUUpRoFU1ZAWgWR0CHGykhRqGldX2UKGgGaAloD0MIzNQkeEPYT0CUhpRSlGgVTegDaBZHQIclj1CgK4R1fZQoaAZoCWgPQwh6qdiY19RgQJSGlFKUaBVN6ANoFkdAh1D5w4sEq3V9lChoBmgJaA9DCDyiQnVz0lhAlIaUUpRoFU3oA2gWR0CHUf6fra/RdX2UKGgGaAloD0MIiDB+GveDXkCUhpRSlGgVTegDaBZHQIdWIbfgrH51fZQoaAZoCWgPQwhm3T8Wor1EwJSGlFKUaBVNSAFoFkdAh196IN3GGXV9lChoBmgJaA9DCAKBzqRN/F9AlIaUUpRoFU3oA2gWR0CHZ5RtxdY5dX2UKGgGaAloD0MIA9L+B9hTYUCUhpRSlGgVTegDaBZHQIdpbeGfwql1fZQoaAZoCWgPQwiYiLfOv45XQJSGlFKUaBVN6ANoFkdAh2zAm7aqTHV9lChoBmgJaA9DCJIgXAGFjjHAlIaUUpRoFU1uAWgWR0CHfIY6XBxhdX2UKGgGaAloD0MIY+yEl+CUFUCUhpRSlGgVTWMBaBZHQIeAqDdxhlV1fZQoaAZoCWgPQwhJ88e0Ni0VQJSGlFKUaBVL5WgWR0CHhE/20zCUdX2UKGgGaAloD0MIje+LS1WGZUCUhpRSlGgVTegDaBZHQIeU8tyxRl91fZQoaAZoCWgPQwjECOHRxl5WQJSGlFKUaBVN6ANoFkdAh5z46XBxgnV9lChoBmgJaA9DCNLEO8ATKGFAlIaUUpRoFU3oA2gWR0CHqKZgG8mKdX2UKGgGaAloD0MIjbPpCOBeJ0CUhpRSlGgVTSwBaBZHQIerPysjmjl1fZQoaAZoCWgPQwjWNzC5Ub5dQJSGlFKUaBVN6ANoFkdAh66eAEt/WnV9lChoBmgJaA9DCEhwI2WL/F5AlIaUUpRoFU3oA2gWR0CHsBYaHbh4dX2UKGgGaAloD0MIUKvoD82OYECUhpRSlGgVTegDaBZHQIew+NR3u/l1fZQoaAZoCWgPQwiOklfnGB5bQJSGlFKUaBVN6ANoFkdAh7YxISUTtnV9lChoBmgJaA9DCN7n+GhxLF9AlIaUUpRoFU3oA2gWR0CHuaOQQtjDdX2UKGgGaAloD0MIuFuSA/Y0YECUhpRSlGgVTegDaBZHQIfCrlq8Djl1fZQoaAZoCWgPQwju7ZbkgB0WQJSGlFKUaBVNTwFoFkdAh8RcSoOx0XV9lChoBmgJaA9DCET5ghYS2DRAlIaUUpRoFUvKaBZHQIfFnEuQIUt1fZQoaAZoCWgPQwhR24ZREPQxwJSGlFKUaBVL/GgWR0CHxtvRZ2ZBdX2UKGgGaAloD0MIEB/Y8V+dUUCUhpRSlGgVTegDaBZHQIft96w+t8x1fZQoaAZoCWgPQwggJXZtb0clwJSGlFKUaBVNRwFoFkdAh/DCG34KyHV9lChoBmgJaA9DCJNWfEPhiVpAlIaUUpRoFU3oA2gWR0CH+Yam4y44dX2UKGgGaAloD0MIqBjnb0KhDUCUhpRSlGgVTT0BaBZHQIf/pdB0ITp1fZQoaAZoCWgPQwh2G9R+a/pYQJSGlFKUaBVN6ANoFkdAiAEIBaLXMHV9lChoBmgJaA9DCEXY8PRKO1hAlIaUUpRoFU3oA2gWR0CIBfPu5SWJdX2UKGgGaAloD0MIi/z6ITbbXUCUhpRSlGgVTegDaBZHQIgXtVLi++N1fZQoaAZoCWgPQwjH2t/ZHlUyQJSGlFKUaBVL/mgWR0CIGRzg/C66dX2UKGgGaAloD0MI61T5npFoYkCUhpRSlGgVTegDaBZHQIgcOoegctJ1fZQoaAZoCWgPQwik3lM57SFjQJSGlFKUaBVN6ANoFkdAiDRZavA443V9lChoBmgJaA9DCM2RlV8GvVZAlIaUUpRoFU3oA2gWR0CIVEpLEk0KdX2UKGgGaAloD0MIOLwgIrVNY0CUhpRSlGgVTegDaBZHQIhXNpj+aSd1fZQoaAZoCWgPQwgZARWOIPVZQJSGlFKUaBVN6ANoFkdAiF5kXcgyM3V9lChoBmgJaA9DCE4On3Qi/TFAlIaUUpRoFU01AWgWR0CIZQiyIHkcdX2UKGgGaAloD0MIVvXyO81mY0CUhpRSlGgVTegDaBZHQIhvZMg2ZRd1fZQoaAZoCWgPQwiQMuICUA5jQJSGlFKUaBVN6ANoFkdAiHGOafBeonV9lChoBmgJaA9DCApkdha9CWFAlIaUUpRoFU3oA2gWR0CIcwMo+fRNdX2UKGgGaAloD0MIaw4QzNH/XkCUhpRSlGgVTegDaBZHQIh0fB7/n4h1fZQoaAZoCWgPQwhYqDXNO6doQJSGlFKUaBVN/QJoFkdAiHXMvysjmnV9lChoBmgJaA9DCHVVoBaD0GJAlIaUUpRoFU3oA2gWR0CId1sNUfgadWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:524a1b72196f92f2bfecdcb77aec5d1cce514811ebfa8b3e51bd8526f8fbb9f7
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4f43478dd546569d0d13e5d8ae667c2eba1050ee6ead545be823b842acca57cb
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:37b46eab8e0240b241215bc7c1b022622ae86decacf5cbd425cba453eab97843
|
3 |
+
size 228875
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
1 |
+
{"mean_reward": 178.48513633327394, "std_reward": 17.507104122999458, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-18T23:02:41.620002"}
|