--- license: apache-2.0 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan-2 results: [] --- # distilhubert-finetuned-gtzan-2 This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.9149 - Accuracy: 0.83 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 25 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.0823 | 1.0 | 113 | 2.0903 | 0.46 | | 1.5111 | 2.0 | 226 | 1.5342 | 0.6 | | 1.2342 | 3.0 | 339 | 1.1036 | 0.68 | | 0.8352 | 4.0 | 452 | 0.9137 | 0.78 | | 0.5727 | 5.0 | 565 | 0.6258 | 0.81 | | 0.3957 | 6.0 | 678 | 0.5984 | 0.83 | | 0.1851 | 7.0 | 791 | 0.6269 | 0.82 | | 0.1607 | 8.0 | 904 | 0.6945 | 0.79 | | 0.1426 | 9.0 | 1017 | 0.6103 | 0.86 | | 0.0519 | 10.0 | 1130 | 0.7502 | 0.81 | | 0.0097 | 11.0 | 1243 | 0.7101 | 0.85 | | 0.006 | 12.0 | 1356 | 0.8174 | 0.82 | | 0.0039 | 13.0 | 1469 | 0.8008 | 0.84 | | 0.0032 | 14.0 | 1582 | 0.8438 | 0.81 | | 0.0027 | 15.0 | 1695 | 0.8206 | 0.82 | | 0.0024 | 16.0 | 1808 | 0.8563 | 0.82 | | 0.002 | 17.0 | 1921 | 0.8884 | 0.82 | | 0.0018 | 18.0 | 2034 | 0.9148 | 0.82 | | 0.0018 | 19.0 | 2147 | 0.9017 | 0.83 | | 0.0016 | 20.0 | 2260 | 0.9178 | 0.83 | | 0.0015 | 21.0 | 2373 | 0.9070 | 0.83 | | 0.0014 | 22.0 | 2486 | 0.9033 | 0.83 | | 0.0014 | 23.0 | 2599 | 0.8975 | 0.84 | | 0.0013 | 24.0 | 2712 | 0.9160 | 0.83 | | 0.0013 | 25.0 | 2825 | 0.9149 | 0.83 | ### Framework versions - Transformers 4.29.0 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.13.2