--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: Action_model results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8664323374340949 --- # Action_model This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5153 - Accuracy: 0.8664 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.2754 | 0.37 | 100 | 1.1163 | 0.7329 | | 0.9345 | 0.75 | 200 | 0.8296 | 0.7996 | | 0.8816 | 1.12 | 300 | 0.7156 | 0.8102 | | 0.7425 | 1.49 | 400 | 0.6529 | 0.8067 | | 0.6883 | 1.87 | 500 | 0.6079 | 0.8243 | | 0.5454 | 2.24 | 600 | 0.5605 | 0.8348 | | 0.5383 | 2.61 | 700 | 0.5571 | 0.8295 | | 0.5442 | 2.99 | 800 | 0.5864 | 0.8190 | | 0.3986 | 3.36 | 900 | 0.5632 | 0.8313 | | 0.3438 | 3.73 | 1000 | 0.5606 | 0.8366 | | 0.4345 | 4.1 | 1100 | 0.5354 | 0.8366 | | 0.4523 | 4.48 | 1200 | 0.4988 | 0.8576 | | 0.3162 | 4.85 | 1300 | 0.5099 | 0.8541 | | 0.3793 | 5.22 | 1400 | 0.5190 | 0.8436 | | 0.3228 | 5.6 | 1500 | 0.4589 | 0.8576 | | 0.1795 | 5.97 | 1600 | 0.5096 | 0.8489 | | 0.2626 | 6.34 | 1700 | 0.5403 | 0.8489 | | 0.3041 | 6.72 | 1800 | 0.4908 | 0.8489 | | 0.1831 | 7.09 | 1900 | 0.5721 | 0.8383 | | 0.2275 | 7.46 | 2000 | 0.5349 | 0.8313 | | 0.1762 | 7.84 | 2100 | 0.5204 | 0.8541 | | 0.2112 | 8.21 | 2200 | 0.5189 | 0.8629 | | 0.1242 | 8.58 | 2300 | 0.5377 | 0.8471 | | 0.1207 | 8.96 | 2400 | 0.5325 | 0.8559 | | 0.1806 | 9.33 | 2500 | 0.5150 | 0.8647 | | 0.1793 | 9.7 | 2600 | 0.5153 | 0.8664 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2