--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: Action_model results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.843585237258348 --- # Action_model This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.6087 - Accuracy: 0.8436 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 1.2783 | 0.3731 | 100 | 1.2065 | 0.7153 | | 0.9907 | 0.7463 | 200 | 0.8331 | 0.8102 | | 0.8428 | 1.1194 | 300 | 0.7278 | 0.8260 | | 0.7442 | 1.4925 | 400 | 0.6576 | 0.8172 | | 0.6749 | 1.8657 | 500 | 0.6087 | 0.8436 | ### Framework versions - Transformers 4.41.1 - Pytorch 2.1.2 - Datasets 2.19.1 - Tokenizers 0.19.1