--- library_name: transformers license: apache-2.0 --- # Model card for Mistral-Instruct-Ukrainian-SFT Supervised finetuning of Mistral-7B-Instruct-v0.2 on Ukrainian datasets. ## Instruction format In order to leverage instruction fine-tuning, your prompt should be surrounded by `[INST]` and `[/INST]` tokens. E.g. ``` text = "[INST]Відповідайте лише буквою правильної відповіді: Елементи експресіонізму наявні у творі: A. «Камінний хрест», B. «Інститутка», C. «Маруся», D. «Людина»[/INST]" ``` This format is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating) via the `apply_chat_template()` method: ## Model Architecture This instruction model is based on Mistral-7B-v0.2, a transformer model with the following architecture choices: - Grouped-Query Attention - Sliding-Window Attention - Byte-fallback BPE tokenizer ## Datasets - [UA-SQUAD](https://huggingface.co/datasets/FIdo-AI/ua-squad/resolve/main/ua_squad_dataset.json) - [Ukrainian StackExchange](https://huggingface.co/datasets/zeusfsx/ukrainian-stackexchange) - [UAlpaca Dataset](https://github.com/robinhad/kruk/blob/main/data/cc-by-nc/alpaca_data_translated.json) - [Ukrainian Subset from Belebele Dataset](https://github.com/facebookresearch/belebele) - [Ukrainian Subset from XQA](https://github.com/thunlp/XQA) ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Radu1999/Mistral-Instruct-Ukrainian-SFT" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.bfloat16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` ## Author Radu Chivereanu