--- tags: - spacy - token-classification language: - en model-index: - name: en_ncv results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.7012058955 - name: NER Recall type: recall value: 0.626746507 - name: NER F Score type: f_score value: 0.6618887015 --- ## Introduction Three variants of the model is built with Spacy3 for grant applications. A simple named entity recognition custom model from scratch with annotation tool prodi.gy. Github info: https://github.com/RaThorat/ner_model_prodigy The most general model is 'en_grantss'. The model 'en_ncv' is more suitable to extract entities from narrative CV's. | Feature | Description | | --- | --- | | **Name** | `en_ncv` | | **Version** | `0.0.0` | | **spaCy** | `>=3.4.3,<3.5.0` | | **Default Pipeline** | `tok2vec`, `ner` | | **Components** | `tok2vec`, `ner` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | narrative CVs | | **License** | n/a | | **Author** | [Rahul Thorat]() | ### Label Scheme
View label scheme (12 labels for 1 components) | Component | Labels | | --- | --- | | **`ner`** | `ACTIVITY`, `GPE`, `KEYWORD`, `MEDIUM`, `MONEY`, `ORG`, `PERSON`, `POSITION`, `RECOGNITION`, `REPOSITORY`, `WEBSITE`, `YEAR` |
### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 66.19 | | `ENTS_P` | 70.12 | | `ENTS_R` | 62.67 | | `TOK2VEC_LOSS` | 786695.63 | | `NER_LOSS` | 965558.77 |