|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Tokenization classes for RWKV5.""" |
|
|
|
import os |
|
import re |
|
from typing import TYPE_CHECKING, List, Optional, Tuple |
|
|
|
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer |
|
from transformers.utils import logging |
|
|
|
|
|
if TYPE_CHECKING: |
|
pass |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
VOCAB_FILES_NAMES = { |
|
"vocab_file": "vocab.txt", |
|
} |
|
PRETRAINED_VOCAB_FILES_MAP = { |
|
"vocab_file": { |
|
"ArthurZ/rwkv-5-utf": "https://huggingface.co/ArthurZ/rwkv-5-utf/blob/main/vocab.txt", |
|
}, |
|
} |
|
|
|
|
|
def whitespace_tokenize(text): |
|
"""Runs basic whitespace cleaning and splitting on a piece of text. |
|
The separators are kept |
|
""" |
|
text = text.strip() |
|
if not text: |
|
return [] |
|
tokens = re.split(b"(?= )", text) |
|
return tokens |
|
|
|
|
|
class WordpieceTokenizer(object): |
|
"""Runs WordPiece tokenization.""" |
|
|
|
def __init__(self, vocab, unk_token): |
|
self.vocab = vocab |
|
self.unk_token = unk_token |
|
|
|
def tokenize(self, text): |
|
""" |
|
Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform |
|
tokenization using the given vocabulary. |
|
|
|
For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`. |
|
|
|
Args: |
|
text: A single token or whitespace separated tokens. This should have |
|
already been passed through *BasicTokenizer*. |
|
|
|
Returns: |
|
A list of wordpiece tokens. |
|
""" |
|
|
|
output_tokens = [] |
|
for token in whitespace_tokenize(text): |
|
chars = list(token) |
|
is_bad = False |
|
start = 0 |
|
sub_tokens = [] |
|
while start < len(chars): |
|
end = len(chars) |
|
cur_substr = None |
|
while start < end: |
|
substr = bytes(chars[start:end]) |
|
if substr in self.vocab: |
|
cur_substr = substr |
|
break |
|
end -= 1 |
|
if cur_substr is None: |
|
is_bad = True |
|
break |
|
try: |
|
cur_substr = cur_substr.decode() |
|
except UnicodeDecodeError: |
|
cur_substr = str(cur_substr) |
|
sub_tokens.append(cur_substr) |
|
start = end |
|
if is_bad: |
|
output_tokens.append(self.unk_token) |
|
else: |
|
output_tokens.extend(sub_tokens) |
|
return output_tokens |
|
|
|
|
|
class Rwkv5Tokenizer(PreTrainedTokenizer): |
|
vocab_files_names = VOCAB_FILES_NAMES |
|
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP |
|
max_model_input_sizes = {"ArthurZ/rwkv-5-utf": 2048} |
|
|
|
model_input_names = ["input_ids", "attention_mask"] |
|
|
|
def __init__(self, vocab_file, bos_token="<s>", eos_token="<s>", unk_token="<s>", **kwargs): |
|
if not os.path.isfile(vocab_file): |
|
raise ValueError( |
|
f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained" |
|
" model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" |
|
) |
|
|
|
with open(vocab_file, "r") as reader: |
|
tokens = reader.readlines() |
|
vocab = {} |
|
for index, token in enumerate(tokens): |
|
token = eval(token.rstrip("\n")) |
|
vocab[token] = index |
|
|
|
self.add_bos_token = True |
|
self.encoder = vocab |
|
self.decoder = {v: k for k, v in vocab.items()} |
|
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.encoder, unk_token=str(unk_token)) |
|
self._added_tokens_decoder = {0: AddedToken(str(bos_token))} |
|
super().__init__(bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, **kwargs) |
|
|
|
@property |
|
def vocab_size(self): |
|
return len(self.encoder) |
|
|
|
def get_vocab(self): |
|
vocab = {str(self.convert_ids_to_tokens(i)): i for i in range(self.vocab_size)} |
|
vocab.update(self.added_tokens_encoder) |
|
return vocab |
|
|
|
def _tokenize(self, text, split_special_tokens=False): |
|
return self.wordpiece_tokenizer.tokenize(text.encode("utf-8")) |
|
|
|
def _convert_token_to_id(self, token): |
|
"""Converts a token (byte) to an id using the vocab.""" |
|
if token.startswith("b'\\"): |
|
token = eval(token) |
|
elif not isinstance(token, bytes): |
|
token = token.encode("utf-8", errors="replace") |
|
return self.encoder.get(token, self.unk_token_id) |
|
|
|
def _convert_id_to_token(self, index): |
|
"""Converts an index (integer) in a token (byte) using the vocab.""" |
|
token = self.decoder.get(index, self.unk_token) |
|
if isinstance(token, (bytes)): |
|
token = token.decode("utf-8", errors="replace") |
|
return token |
|
|
|
def convert_tokens_to_string(self, tokens): |
|
"""Converts a sequence of tokens (bytes) in a single string. Additional tokens are encoded to bytes""" |
|
out_string = b"".join([k.encode(errors="replace") if isinstance(k, str) else k for k in tokens]).decode( |
|
"utf-8" |
|
) |
|
return out_string |
|
|
|
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: |
|
index = 0 |
|
if os.path.isdir(save_directory): |
|
vocab_file = os.path.join( |
|
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] |
|
) |
|
else: |
|
vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory |
|
with open(vocab_file, "w") as writer: |
|
for token, token_index in sorted(self.encoder.items(), key=lambda kv: kv[1]): |
|
if index != token_index: |
|
logger.warning( |
|
f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." |
|
" Please check that the vocabulary is not corrupted!" |
|
) |
|
index = token_index |
|
writer.write(str(token) + "\n") |
|
index += 1 |
|
return (vocab_file,) |
|
|
|
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): |
|
if self.add_bos_token: |
|
bos_token_ids = [self.bos_token_id] |
|
else: |
|
bos_token_ids = [] |
|
|
|
output = bos_token_ids + token_ids_0 |
|
|
|
if token_ids_1 is None: |
|
return output |
|
|
|
return output + bos_token_ids + token_ids_1 |
|
|
|
def get_special_tokens_mask( |
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False |
|
) -> List[int]: |
|
""" |
|
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding |
|
special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods. |
|
|
|
Args: |
|
token_ids_0 (`List[int]`): |
|
List of IDs. |
|
token_ids_1 (`List[int]`, *optional*): |
|
Optional second list of IDs for sequence pairs. |
|
already_has_special_tokens (`bool`, *optional*, defaults to `False`): |
|
Whether or not the token list is already formatted with special tokens for the model. |
|
|
|
Returns: |
|
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. |
|
""" |
|
if already_has_special_tokens: |
|
return super().get_special_tokens_mask( |
|
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True |
|
) |
|
|
|
if not self.add_bos_token: |
|
return super().get_special_tokens_mask( |
|
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=False |
|
) |
|
|
|
if token_ids_1 is None: |
|
return [1] + ([0] * len(token_ids_0)) |
|
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) |