KaleiNeely
commited on
Commit
•
0e21722
1
Parent(s):
ed0df8b
Upload hf_rwkv_tokenizer.py
Browse files- hf_rwkv_tokenizer.py +279 -0
hf_rwkv_tokenizer.py
ADDED
@@ -0,0 +1,279 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Tokenization classes for RWKV6."""
|
16 |
+
|
17 |
+
import os
|
18 |
+
import re
|
19 |
+
from typing import TYPE_CHECKING, List, Optional, Tuple
|
20 |
+
|
21 |
+
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
|
22 |
+
from transformers.utils import logging
|
23 |
+
|
24 |
+
|
25 |
+
if TYPE_CHECKING:
|
26 |
+
pass
|
27 |
+
|
28 |
+
logger = logging.get_logger(__name__)
|
29 |
+
|
30 |
+
|
31 |
+
VOCAB_FILES_NAMES = {
|
32 |
+
"vocab_file": "rwkv_vocab_v20230424.txt",
|
33 |
+
}
|
34 |
+
|
35 |
+
class TRIE:
|
36 |
+
__slots__ = tuple("ch,to,values,front".split(","))
|
37 |
+
to: list
|
38 |
+
values: set
|
39 |
+
|
40 |
+
def __init__(self, front=None, ch=None):
|
41 |
+
self.ch = ch
|
42 |
+
self.to = [None for ch in range(256)]
|
43 |
+
self.values = set()
|
44 |
+
self.front = front
|
45 |
+
|
46 |
+
def __repr__(self):
|
47 |
+
fr = self
|
48 |
+
ret = []
|
49 |
+
while fr != None:
|
50 |
+
if fr.ch != None:
|
51 |
+
ret.append(fr.ch)
|
52 |
+
fr = fr.front
|
53 |
+
return "<TRIE %s %s>" % (ret[::-1], self.values)
|
54 |
+
|
55 |
+
def add(self, key: bytes, idx: int = 0, val=None):
|
56 |
+
if idx == len(key):
|
57 |
+
if val is None:
|
58 |
+
val = key
|
59 |
+
self.values.add(val)
|
60 |
+
return self
|
61 |
+
ch = key[idx]
|
62 |
+
if self.to[ch] is None:
|
63 |
+
self.to[ch] = TRIE(front=self, ch=ch)
|
64 |
+
return self.to[ch].add(key, idx=idx + 1, val=val)
|
65 |
+
|
66 |
+
def find_longest(self, key: bytes, idx: int = 0):
|
67 |
+
u: TRIE = self
|
68 |
+
ch: int = key[idx]
|
69 |
+
|
70 |
+
while u.to[ch] is not None:
|
71 |
+
u = u.to[ch]
|
72 |
+
idx += 1
|
73 |
+
if u.values:
|
74 |
+
ret = idx, u, u.values
|
75 |
+
if idx == len(key):
|
76 |
+
break
|
77 |
+
ch = key[idx]
|
78 |
+
return ret
|
79 |
+
|
80 |
+
|
81 |
+
class RWKV_TOKENIZER:
|
82 |
+
def __init__(self, file_name):
|
83 |
+
self.idx2token = {}
|
84 |
+
sorted = [] # must be already sorted
|
85 |
+
with open(file_name, "r", encoding="utf-8") as f:
|
86 |
+
lines = f.readlines()
|
87 |
+
for l in lines:
|
88 |
+
idx = int(l[: l.index(" ")])
|
89 |
+
x = eval(l[l.index(" ") : l.rindex(" ")])
|
90 |
+
x = x.encode("utf-8") if isinstance(x, str) else x
|
91 |
+
assert isinstance(x, bytes)
|
92 |
+
|
93 |
+
assert len(x) == int(l[l.rindex(" ") :])
|
94 |
+
sorted += [x]
|
95 |
+
self.idx2token[idx] = x
|
96 |
+
|
97 |
+
self.token2idx = {}
|
98 |
+
for k, v in self.idx2token.items():
|
99 |
+
self.token2idx[v] = int(k)
|
100 |
+
|
101 |
+
self.root = TRIE()
|
102 |
+
for t, i in self.token2idx.items():
|
103 |
+
_ = self.root.add(t, val=(t, i))
|
104 |
+
|
105 |
+
def encodeBytes(self, src: bytes):
|
106 |
+
idx: int = 0
|
107 |
+
tokens = []
|
108 |
+
while idx < len(src):
|
109 |
+
_idx: int = idx
|
110 |
+
idx, _, values = self.root.find_longest(src, idx)
|
111 |
+
assert idx != _idx
|
112 |
+
_, token = next(iter(values))
|
113 |
+
tokens.append(token)
|
114 |
+
return tokens
|
115 |
+
|
116 |
+
def decodeBytes(self, tokens):
|
117 |
+
return b"".join(map(lambda i: self.idx2token[i], tokens))
|
118 |
+
|
119 |
+
def encode(self, src):
|
120 |
+
if isinstance(src, str):
|
121 |
+
return [self.encodeBytes(src.encode("utf-8"))]
|
122 |
+
elif isinstance(src, list):
|
123 |
+
return [self.encodeBytes(s.encode("utf-8")) for s in src]
|
124 |
+
|
125 |
+
def decode(self, tokens):
|
126 |
+
return [self.decodeBytes(batch).decode("utf-8") for batch in tokens]
|
127 |
+
# try:
|
128 |
+
# return self.decodeBytes(tokens).decode('utf-8')
|
129 |
+
# except:
|
130 |
+
# return '\ufffd' # bad utf-8
|
131 |
+
|
132 |
+
def printTokens(self, tokens):
|
133 |
+
for i in tokens:
|
134 |
+
s = self.idx2token[i]
|
135 |
+
try:
|
136 |
+
s = s.decode("utf-8")
|
137 |
+
except:
|
138 |
+
pass
|
139 |
+
print(f"{repr(s)}{i}", end=" ")
|
140 |
+
print()
|
141 |
+
|
142 |
+
|
143 |
+
class Rwkv6Tokenizer(PreTrainedTokenizer):
|
144 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
145 |
+
model_input_names = ["input_ids", "attention_mask"]
|
146 |
+
|
147 |
+
def __init__(
|
148 |
+
self, vocab_file, bos_token="<s>", eos_token="<s>", unk_token="<s>", **kwargs
|
149 |
+
):
|
150 |
+
if not os.path.isfile(vocab_file):
|
151 |
+
raise ValueError(
|
152 |
+
f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"
|
153 |
+
" model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
|
154 |
+
)
|
155 |
+
|
156 |
+
with open(vocab_file, "r", encoding="utf-8") as reader:
|
157 |
+
tokens = reader.readlines()
|
158 |
+
|
159 |
+
if "add_bos_token" in kwargs:
|
160 |
+
self.add_bos_token = kwargs["add_bos_token"]
|
161 |
+
else:
|
162 |
+
self.add_bos_token = False
|
163 |
+
self.trie_tokenizer = RWKV_TOKENIZER(vocab_file)
|
164 |
+
vocab = self.trie_tokenizer.token2idx
|
165 |
+
self.encoder = vocab
|
166 |
+
self.decoder = {v: k for k, v in vocab.items()}
|
167 |
+
self._added_tokens_decoder = {0: AddedToken(str(bos_token))}
|
168 |
+
super().__init__(
|
169 |
+
bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, **kwargs
|
170 |
+
)
|
171 |
+
|
172 |
+
@property
|
173 |
+
def vocab_size(self):
|
174 |
+
return len(self.encoder)
|
175 |
+
|
176 |
+
def get_vocab(self):
|
177 |
+
vocab = {str(self.convert_ids_to_tokens(i)): i for i in range(self.vocab_size)}
|
178 |
+
vocab.update(self.added_tokens_encoder)
|
179 |
+
return vocab
|
180 |
+
|
181 |
+
def _tokenize(self, text, split_special_tokens=False):
|
182 |
+
# return self.wordpiece_tokenizer.tokenize(text.encode("utf-8"))
|
183 |
+
return self.trie_tokenizer.encode(text)[0]
|
184 |
+
|
185 |
+
def _convert_token_to_id(self, token):
|
186 |
+
return token
|
187 |
+
|
188 |
+
def _convert_id_to_token(self, index):
|
189 |
+
"""Converts an index (integer) in a token (byte) using the vocab."""
|
190 |
+
token = self.decoder.get(index, self.unk_token)
|
191 |
+
if isinstance(token, (bytes)):
|
192 |
+
token = token.decode("utf-8", errors="replace")
|
193 |
+
return token
|
194 |
+
|
195 |
+
def convert_tokens_to_string(self, tokens):
|
196 |
+
"""Converts a sequence of tokens (bytes) in a single string. Additional tokens are encoded to bytes"""
|
197 |
+
out_string = b"".join(
|
198 |
+
[k.encode(errors="replace") if isinstance(k, str) else k for k in tokens]
|
199 |
+
).decode("utf-8")
|
200 |
+
return out_string
|
201 |
+
|
202 |
+
def save_vocabulary(
|
203 |
+
self, save_directory: str, filename_prefix: Optional[str] = None
|
204 |
+
) -> Tuple[str]:
|
205 |
+
index = 0
|
206 |
+
if os.path.isdir(save_directory):
|
207 |
+
vocab_file = os.path.join(
|
208 |
+
save_directory,
|
209 |
+
(filename_prefix + "-" if filename_prefix else "") + "vocab.txt",
|
210 |
+
)
|
211 |
+
else:
|
212 |
+
vocab_file = (
|
213 |
+
filename_prefix + "-" if filename_prefix else ""
|
214 |
+
) + save_directory
|
215 |
+
with open(vocab_file, "w", encoding="utf-8") as writer:
|
216 |
+
for token, token_index in sorted(
|
217 |
+
self.encoder.items(), key=lambda kv: kv[1]
|
218 |
+
):
|
219 |
+
if index != token_index:
|
220 |
+
logger.warning(
|
221 |
+
f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
|
222 |
+
" Please check that the vocabulary is not corrupted!"
|
223 |
+
)
|
224 |
+
index = token_index
|
225 |
+
writer.write(str(token) + "\n")
|
226 |
+
index += 1
|
227 |
+
return (vocab_file,)
|
228 |
+
|
229 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
230 |
+
if self.add_bos_token:
|
231 |
+
bos_token_ids = [self.bos_token_id]
|
232 |
+
else:
|
233 |
+
bos_token_ids = []
|
234 |
+
|
235 |
+
output = bos_token_ids + token_ids_0
|
236 |
+
|
237 |
+
if token_ids_1 is None:
|
238 |
+
return output
|
239 |
+
|
240 |
+
return output + bos_token_ids + token_ids_1
|
241 |
+
|
242 |
+
def get_special_tokens_mask(
|
243 |
+
self,
|
244 |
+
token_ids_0: List[int],
|
245 |
+
token_ids_1: Optional[List[int]] = None,
|
246 |
+
already_has_special_tokens: bool = False,
|
247 |
+
) -> List[int]:
|
248 |
+
"""
|
249 |
+
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
|
250 |
+
special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods.
|
251 |
+
|
252 |
+
Args:
|
253 |
+
token_ids_0 (`List[int]`):
|
254 |
+
List of IDs.
|
255 |
+
token_ids_1 (`List[int]`, *optional*):
|
256 |
+
Optional second list of IDs for sequence pairs.
|
257 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
258 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
259 |
+
|
260 |
+
Returns:
|
261 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
262 |
+
"""
|
263 |
+
if already_has_special_tokens:
|
264 |
+
return super().get_special_tokens_mask(
|
265 |
+
token_ids_0=token_ids_0,
|
266 |
+
token_ids_1=token_ids_1,
|
267 |
+
already_has_special_tokens=True,
|
268 |
+
)
|
269 |
+
|
270 |
+
if not self.add_bos_token:
|
271 |
+
return super().get_special_tokens_mask(
|
272 |
+
token_ids_0=token_ids_0,
|
273 |
+
token_ids_1=token_ids_1,
|
274 |
+
already_has_special_tokens=False,
|
275 |
+
)
|
276 |
+
|
277 |
+
if token_ids_1 is None:
|
278 |
+
return [1] + ([0] * len(token_ids_0))
|
279 |
+
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1))
|