# coding=utf-8 # Copyright 2024 The RWKV team and HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch RWKV5 World model.""" from dataclasses import dataclass from pathlib import Path from typing import List, Optional, Tuple, Union import pkg_resources import torch import torch.nn.functional as F import torch.utils.checkpoint from torch import nn from torch.nn import CrossEntropyLoss from transformers.modeling_utils import PreTrainedModel from transformers.utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, is_bitsandbytes_available, is_ninja_available, is_torch_cuda_available, logging, ) try: from flash_rwkv import rwkv5_cuda_linear_attention # Check version required_version = pkg_resources.parse_version("0.2.1") current_version = pkg_resources.get_distribution("flash-rwkv").parsed_version if current_version < required_version: raise Exception("Your version of flash-rwkv is below 0.2.1. Please use pip install --upgrade flash-rwkv to update or install the required version.") except ImportError: raise ImportError("The flash-rwkv package is not detected. Please install it using pip install flash-rwkv.") except pkg_resources.DistributionNotFound: raise ImportError("The flash-rwkv package is not detected. Please install it using pip install flash-rwkv.") from .configuration_rwkv5 import Rwkv5Config logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "RWKV/rwkv-5-world-1b5" _CONFIG_FOR_DOC = "Rwkv5Config" def rwkv5_linear_attention_cpu(receptance, key, value, time_decay, time_first, state): input_dtype = receptance.dtype # For CPU fallback. Will be slower and probably take more memory than the custom CUDA kernel if not executed # within a torch.no_grad. batch, seq_length, hidden_size = receptance.shape num_heads, head_size = time_first.shape key = key.float().view(batch, seq_length, num_heads, head_size).transpose(1, 2).transpose(-2, -1) value = value.float().view(batch, seq_length, num_heads, head_size).transpose(1, 2) receptance = receptance.float().view(batch, seq_length, num_heads, head_size).transpose(1, 2) time_decay = torch.exp(-torch.exp(time_decay.float())).reshape(-1, 1, 1).reshape(num_heads, -1, 1) time_first = time_first.float().reshape(-1, 1, 1).reshape(num_heads, -1, 1) out = torch.zeros_like(key).reshape(batch, seq_length, num_heads, head_size) for current_index in range(seq_length): current_receptance = receptance[:, :, current_index:current_index+1, :] current_key = key[:, :, :, current_index:current_index+1] current_value = value[:, :, current_index:current_index+1, :] attention_output = current_key @ current_value out[:, current_index] = (current_receptance @ (time_first * attention_output + state)).squeeze(2) with torch.no_grad(): state = attention_output + time_decay * state return out, state # copied from RWKV but with receptance def RWKV5_linear_attention(training, receptance, key, value, time_decay, time_first, state): no_cuda = any(t.device.type != "cuda" for t in [time_decay, time_first, key, value]) # Launching the CUDA kernel for just one token will actually be slower (there is no for loop in the CPU version # in this case). one_token = key.size(1) == 1 if not training or no_cuda or one_token: return rwkv5_linear_attention_cpu( receptance, key, value, time_decay, time_first, state ) else: return rwkv5_cuda_linear_attention(receptance.float(), key.float(), value.float(), time_decay.float().flatten(), time_first.float().flatten(), state) class Rwkv5SelfAttention(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.config = config self.layer_id = layer_id hidden_size = config.hidden_size attention_hidden_size = config.attention_hidden_size self.attention_hidden_size = attention_hidden_size head_size = config.head_size num_heads = attention_hidden_size // head_size self.time_decay = nn.Parameter(torch.empty(num_heads, head_size)) self.time_faaaa = nn.Parameter(torch.empty(num_heads, head_size)) self.time_mix_gate = nn.Parameter(torch.empty(1, 1, hidden_size)) self.time_mix_key = nn.Parameter(torch.empty(1, 1, hidden_size)) self.time_mix_value = nn.Parameter(torch.empty(1, 1, hidden_size)) self.time_mix_receptance = nn.Parameter(torch.empty(1, 1, hidden_size)) self.time_shift = nn.ZeroPad2d((0, 0, 1, -1)) self.key = nn.Linear(hidden_size, attention_hidden_size, bias=False) self.value = nn.Linear(hidden_size, attention_hidden_size, bias=False) self.receptance = nn.Linear(hidden_size, attention_hidden_size, bias=False) self.gate = nn.Linear(hidden_size, attention_hidden_size, bias=False) self.output = nn.Linear(attention_hidden_size, hidden_size, bias=False) self.ln_x = nn.GroupNorm(num_heads, hidden_size) def extract_key_value(self, hidden, state=None): # Mix hidden with the previous timestep to produce key, value, receptance if hidden.size(1) == 1 and state is not None: shifted = state[0][:, :, self.layer_id] else: shifted = self.time_shift(hidden) if state is not None: shifted[:, 0] = state[0][:, :, self.layer_id] if len(shifted.size()) == 2: shifted = shifted.unsqueeze(1) key = hidden * self.time_mix_key + shifted * (1 - self.time_mix_key) value = hidden * self.time_mix_value + shifted * (1 - self.time_mix_value) receptance = hidden * self.time_mix_receptance + shifted * (1 - self.time_mix_receptance) gate = hidden * self.time_mix_gate + shifted * (1 - self.time_mix_gate) key = self.key(key) value = self.value(value) receptance = self.receptance(receptance) gate = F.silu(self.gate(gate)) if state is not None: state[0][:, :, self.layer_id] = hidden[:, -1] return receptance, key, value, gate, state def forward(self, hidden, state=None, use_cache=False, seq_mode=True): receptance, key, value, gate, state = self.extract_key_value(hidden, state=state) B,T,C = receptance.shape H, S = self.time_faaaa.shape layer_state = state[1][:, :, :, :, self.layer_id] if state is not None else None out, layer_state = RWKV5_linear_attention( self.training, receptance, key, value, self.time_decay, self.time_faaaa, layer_state ) if layer_state is not None: state[1][:, :, :, :, self.layer_id] = layer_state out = out.reshape(B * T, H * S) out = F.group_norm(out / self.config.head_size_divisor, num_groups=H, weight=self.ln_x.weight.to(out.dtype), bias=self.ln_x.bias.to(out.dtype), eps=self.ln_x.eps).reshape(B, T, H * S) out = out.to(dtype=hidden.dtype) * gate out = self.output(out) return out, state # Copied from rwkv except for the intermediate size class Rwkv5FeedForward(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.config = config self.layer_id = layer_id hidden_size = config.hidden_size intermediate_size = ( config.intermediate_size if config.intermediate_size is not None else int((config.hidden_size * 3.5) // 32 * 32) ) self.time_shift = nn.ZeroPad2d((0, 0, 1, -1)) self.time_mix_key = nn.Parameter(torch.empty(1, 1, hidden_size)) self.time_mix_receptance = nn.Parameter(torch.empty(1, 1, hidden_size)) self.key = nn.Linear(hidden_size, intermediate_size, bias=False) self.receptance = nn.Linear(hidden_size, hidden_size, bias=False) self.value = nn.Linear(intermediate_size, hidden_size, bias=False) def forward(self, hidden, state=None): if hidden.size(1) == 1 and state is not None: shifted = state[2][:, :, self.layer_id] else: shifted = self.time_shift(hidden) if state is not None: shifted[:, 0] = state[2][:, :, self.layer_id] if len(shifted.size()) == 2: shifted = shifted.unsqueeze(1) key = hidden * self.time_mix_key + shifted * (1 - self.time_mix_key) receptance = hidden * self.time_mix_receptance + shifted * (1 - self.time_mix_receptance) key = torch.square(torch.relu(self.key(key))) value = self.value(key) receptance = torch.sigmoid(self.receptance(receptance)) if state is not None: state[2][:, :, self.layer_id] = hidden[:, -1] return receptance * value, state # Copied from transformers.models.rwkv.modeling_rwkv.RwkvBlock with Rwkv->Rwkv5 class Rwkv5Block(nn.Module): def __init__(self, config, layer_id): super().__init__() self.config = config self.layer_id = layer_id if layer_id == 0: self.pre_ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon) self.ln1 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon) self.ln2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon) self.attention = Rwkv5SelfAttention(config, layer_id) self.feed_forward = Rwkv5FeedForward(config, layer_id) def forward(self, hidden, state=None, use_cache=False, output_attentions=False, seq_mode=True): if self.layer_id == 0: hidden = self.pre_ln(hidden) attention, state = self.attention(self.ln1(hidden), state=state, use_cache=use_cache, seq_mode=seq_mode) hidden = hidden + attention feed_forward, state = self.feed_forward(self.ln2(hidden), state=state) hidden = hidden + feed_forward outputs = (hidden, state) if output_attentions: outputs += (attention,) else: outputs += (None,) return outputs # Copied from transformers.models.rwkv.modeling_rwkv.RwkvPreTrainedModel with Rwkv->Rwkv5 class Rwkv5PreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = Rwkv5Config base_model_prefix = "rwkv5" _no_split_modules = ["Rwkv5Block"] _keep_in_fp32_modules = ["time_decay", "time_first"] supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights.""" if isinstance(module, Rwkv5SelfAttention): layer_id = module.layer_id num_hidden_layers = module.config.num_hidden_layers hidden_size = module.config.hidden_size attention_hidden_size = module.attention_hidden_size head_size = module.config.head_size num_heads = attention_hidden_size // head_size ratio_0_to_1 = layer_id / (num_hidden_layers - 1) # 0 to 1 ratio_1_to_almost0 = 1.0 - (layer_id / num_hidden_layers) # 1 to ~0 time_weight = torch.tensor( [i / hidden_size for i in range(hidden_size)], dtype=module.time_mix_key.dtype, device=module.time_mix_key.device, ) time_weight = time_weight[None, None, :] decay_speed = [ -6.0 + 5.0 * (h / (attention_hidden_size - 1)) ** (0.7 + 1.3 * ratio_0_to_1) for h in range(attention_hidden_size) ] decay_speed = torch.tensor(decay_speed, dtype=module.time_decay.dtype, device=module.time_decay.device) tmp = torch.tensor( [ (1.0 - (i / (attention_hidden_size - 1.0))) * ratio_0_to_1 + 0.1 * ((i + 1) % 3 - 1) for i in range(attention_hidden_size) ], dtype=module.time_faaaa.dtype, device=module.time_faaaa.device, ) with torch.no_grad(): module.time_decay.data = decay_speed.reshape(num_heads, head_size) module.time_faaaa.data = tmp.reshape(num_heads, head_size) module.time_mix_key.data = torch.pow(time_weight, ratio_1_to_almost0) module.time_mix_value.data = torch.pow(time_weight, ratio_1_to_almost0) + 0.3 * ratio_0_to_1 module.time_mix_receptance.data = torch.pow(time_weight, 0.5 * ratio_1_to_almost0) module.time_mix_gate.data = torch.pow(time_weight, 0.5 * ratio_1_to_almost0) elif isinstance(module, Rwkv5FeedForward): layer_id = module.layer_id num_hidden_layers = module.config.num_hidden_layers hidden_size = module.config.hidden_size ratio_1_to_almost0 = 1.0 - (layer_id / num_hidden_layers) # 1 to ~0 time_weight = torch.tensor( [i / hidden_size for i in range(hidden_size)], dtype=module.time_mix_key.dtype, device=module.time_mix_key.device, ) time_weight = time_weight[None, None, :] with torch.no_grad(): module.time_mix_key.data = torch.pow(time_weight, ratio_1_to_almost0) module.time_mix_receptance.data = torch.pow(time_weight, ratio_1_to_almost0) # Copied from transformers.models.rwkv.modeling_rwkv.RwkvOutput with Rwkv->Rwkv5 @dataclass class Rwkv5Output(ModelOutput): """ Class for the RWKV5 model outputs. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. state (list of five `torch.FloatTensor` of shape `(batch_size, hidden_size, num_hidden_layers)`): The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to avoid providing the old `input_ids`. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ last_hidden_state: torch.FloatTensor = None state: Optional[List[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None # Copied from transformers.models.rwkv.modeling_rwkv.RwkvCausalLMOutput with Rwkv->Rwkv5 @dataclass class Rwkv5CausalLMOutput(ModelOutput): """ Base class for causal language model (or autoregressive) outputs. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Language modeling loss (for next-token prediction). logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). state (list of five `torch.FloatTensor` of shape `(batch_size, hidden_size, num_hidden_layers)`): The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to avoid providing the old `input_ids`. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None state: Optional[List[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None RWKV5_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`Rwkv5Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ RWKV5_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`): `input_ids_length` = `sequence_length` if `past_key_values` is `None` else `past_key_values[0][0].shape[-2]` (`sequence_length` of input past key value states). Indices of input sequence tokens in the vocabulary. If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as `input_ids`. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. state (tuple of five `torch.FloatTensor` of shape `(batch_size, hidden_size, num_hidden_layers)`, *optional*): If passed along, the model uses the previous state in all the blocks (which will give the output for the `input_ids` provided as if the model add `state_input_ids + input_ids` as context). use_cache (`bool`, *optional*): If set to `True`, the last state is returned and can be used to quickly generate the next logits. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare RWKV5 Model transformer outputting raw hidden-states without any specific head on top.", RWKV5_START_DOCSTRING, ) class Rwkv5Model(Rwkv5PreTrainedModel): def __init__(self, config): super().__init__(config) self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size) self.blocks = nn.ModuleList([Rwkv5Block(config, layer_id=idx) for idx in range(config.num_hidden_layers)]) self.ln_out = nn.LayerNorm(config.hidden_size) self.layers_are_rescaled = False self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings def set_input_embeddings(self, new_embeddings): self.embeddings = new_embeddings @add_start_docstrings_to_model_forward(RWKV5_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=Rwkv5Output, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.LongTensor] = None, # noqa inputs_embeds: Optional[torch.FloatTensor] = None, state: Optional[List[torch.FloatTensor]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, Rwkv5Output]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) # FIXME - training is supportable with the CUDA code # rwkv5 only support inference in huggingface. use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if self.training == self.layers_are_rescaled and ( self.embeddings.weight.dtype == torch.float16 or self.embeddings.weight.dtype == torch.bfloat16 ): self._rescale_layers() if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is None and inputs_embeds is None: raise ValueError("You have to specify either input_ids or inputs_embeds") if inputs_embeds is None: inputs_embeds = self.embeddings(input_ids) if state is None: state = [] head_size = self.config.head_size num_heads = self.config.attention_hidden_size // head_size state_attn_x = torch.zeros( (inputs_embeds.size(0), self.config.hidden_size, self.config.num_hidden_layers), dtype=inputs_embeds.dtype, requires_grad=False, device=inputs_embeds.device, ).contiguous() state_attn_kv = torch.zeros( ( inputs_embeds.size(0), num_heads, head_size, head_size, self.config.num_hidden_layers, ), dtype=torch.float32, requires_grad=False, device=inputs_embeds.device, ).contiguous() state_ffn_x = torch.zeros( (inputs_embeds.size(0), self.config.hidden_size, self.config.num_hidden_layers), dtype=inputs_embeds.dtype, requires_grad=False, device=inputs_embeds.device, ).contiguous() state.append(state_attn_x) state.append(state_attn_kv) state.append(state_ffn_x) seq_mode = inputs_embeds.shape[1] > 1 hidden_states = inputs_embeds all_self_attentions = () if output_attentions else None all_hidden_states = () if output_hidden_states else None for idx, block in enumerate(self.blocks): hidden_states, state, attentions = block( hidden_states, state=state, use_cache=use_cache, output_attentions=output_attentions, seq_mode=seq_mode ) if ( self.layers_are_rescaled and self.config.rescale_every > 0 and (idx + 1) % self.config.rescale_every == 0 ): hidden_states = hidden_states / 2 if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if output_attentions: all_self_attentions = all_self_attentions + (attentions,) hidden_states = self.ln_out(hidden_states) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return (hidden_states, state, all_hidden_states, all_self_attentions) return Rwkv5Output( last_hidden_state=hidden_states, state=state, hidden_states=all_hidden_states, # None attentions=all_self_attentions, # None ) def _rescale_layers(self): # Layers should be rescaled for inference only. if self.layers_are_rescaled == (not self.training): return if self.config.rescale_every > 0: with torch.no_grad(): for block_id, block in enumerate(self.blocks): if self.training: block.attention.output.weight.mul_(2 ** int(block_id // self.config.rescale_every)) block.feed_forward.value.weight.mul_(2 ** int(block_id // self.config.rescale_every)) else: # Deal with quantization statistics if hasattr(block.attention.output.weight, "SCB"): block.attention.output.weight.SCB.div_(2 ** int(block_id // self.config.rescale_every)) block.feed_forward.value.weight.SCB.div_(2 ** int(block_id // self.config.rescale_every)) elif hasattr(block.attention.output.weight, "quant_state"): self._bnb_4bit_dequantize_and_rescale(block.attention.output, block_id) self._bnb_4bit_dequantize_and_rescale(block.feed_forward.value, block_id) else: block.attention.output.weight.div_(2 ** int(block_id // self.config.rescale_every)) block.feed_forward.value.weight.div_(2 ** int(block_id // self.config.rescale_every)) self.layers_are_rescaled = not self.training def _bnb_4bit_dequantize_and_rescale(self, target_layer, block_id): r""" Perform the dequantization and rescaling of the weights of a given layer. After that operation the layer will be quantized again. """ if not is_bitsandbytes_available(): raise ImportError("Please install bitsandbytes to use this method.") import bitsandbytes as bnb dequant_weights = bnb.functional.dequantize_4bit(target_layer.weight.data, target_layer.weight.quant_state) dequant_weights.div_(2 ** int(block_id // self.config.rescale_every)) # re-quantize the model: # we need to put it first on CPU then back to the device # this will create an overhead :/ # We set requires_grad=False as we cannot compute gradients on top of 4bit parameters anyway and to avoid # bugs with bnb quant_weight = bnb.nn.Params4bit(dequant_weights.to("cpu"), requires_grad=False).to(dequant_weights.device) setattr(target_layer, "weight", quant_weight) # copied from HuggingFace https://github.com/huggingface/transformers/blob/main/src/transformers/models/rwkv/modeling_rwkv.py @add_start_docstrings( """ The RWKV5 Model transformer with a language modeling head on top (linear layer with weights tied to the input embeddings). """, RWKV5_START_DOCSTRING, ) # Copied from transformers.models.rwkv.modeling_rwkv.RwkvForCausalLM with Rwkv->Rwkv5 class Rwkv5ForCausalLM(Rwkv5PreTrainedModel): _tied_weights_keys = ["head.weight"] def __init__(self, config): super().__init__(config) self.rwkv = Rwkv5Model(config) self.head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.head def set_output_embeddings(self, new_embeddings): self.head = new_embeddings def prepare_inputs_for_generation(self, input_ids, state=None, inputs_embeds=None, **kwargs): # only last token for inputs_ids if the state is passed along. if state is not None: input_ids = input_ids[:, -1].unsqueeze(-1) # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and state is None: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids} model_inputs["state"] = state return model_inputs @add_start_docstrings_to_model_forward(RWKV5_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=Rwkv5CausalLMOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, state: Optional[List[torch.FloatTensor]] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, Rwkv5CausalLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.rwkv( input_ids, inputs_embeds=inputs_embeds, state=state, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] logits = self.head(hidden_states) loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(logits.device) # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return Rwkv5CausalLMOutput( loss=loss, logits=logits, state=outputs.state, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )