Training complete
Browse files
README.md
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
library_name: peft
|
4 |
+
tags:
|
5 |
+
- Summarization
|
6 |
+
- generated_from_trainer
|
7 |
+
datasets:
|
8 |
+
- cnn_dailymail
|
9 |
+
metrics:
|
10 |
+
- rouge
|
11 |
+
base_model: google/flan-t5-base
|
12 |
+
model-index:
|
13 |
+
- name: flan-t5-base-finetuned-QLoRA-v2
|
14 |
+
results: []
|
15 |
+
---
|
16 |
+
|
17 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
18 |
+
should probably proofread and complete it, then remove this comment. -->
|
19 |
+
|
20 |
+
# flan-t5-base-finetuned-QLoRA-v2
|
21 |
+
|
22 |
+
This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the cnn_dailymail dataset.
|
23 |
+
It achieves the following results on the evaluation set:
|
24 |
+
- Loss: 1.1284
|
25 |
+
- Rouge1: 0.2459
|
26 |
+
- Rouge2: 0.1133
|
27 |
+
- Rougel: 0.2014
|
28 |
+
- Rougelsum: 0.2312
|
29 |
+
|
30 |
+
## Model description
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Intended uses & limitations
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training and evaluation data
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Training procedure
|
43 |
+
|
44 |
+
### Training hyperparameters
|
45 |
+
|
46 |
+
The following hyperparameters were used during training:
|
47 |
+
- learning_rate: 3e-05
|
48 |
+
- train_batch_size: 4
|
49 |
+
- eval_batch_size: 4
|
50 |
+
- seed: 42
|
51 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
52 |
+
- lr_scheduler_type: linear
|
53 |
+
- num_epochs: 4
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|
|
59 |
+
| 3.2738 | 1.0 | 500 | 2.5624 | 0.2375 | 0.1097 | 0.1987 | 0.223 |
|
60 |
+
| 1.8824 | 2.0 | 1000 | 1.2830 | 0.2419 | 0.11 | 0.1988 | 0.2278 |
|
61 |
+
| 1.6192 | 3.0 | 1500 | 1.1527 | 0.2477 | 0.1149 | 0.2033 | 0.2325 |
|
62 |
+
| 1.5256 | 4.0 | 2000 | 1.1284 | 0.2459 | 0.1133 | 0.2014 | 0.2312 |
|
63 |
+
|
64 |
+
|
65 |
+
### Framework versions
|
66 |
+
|
67 |
+
- PEFT 0.8.2
|
68 |
+
- Transformers 4.37.0
|
69 |
+
- Pytorch 2.1.2
|
70 |
+
- Datasets 2.1.0
|
71 |
+
- Tokenizers 0.15.1
|