Feature Extraction
Transformers
PyTorch
bbsnet
custom_code
bbsnet / README.md
thinh-huynh-re's picture
Update README.md
3a196dc
---
license: mit
datasets:
- RGBD-SOD/rgbdsod_datasets
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
<!-- This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
<img src="https://raw.githubusercontent.com/DengPingFan/BBS-Net/master/Images/pipeline.png" width="80%"/>
- **Developed by:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** https://github.com/DengPingFan/BBS-Net
- **Paper [optional]:** [BBS-Net: RGB-D salient object detection with a bifurcated backbone strategy network, 2020](https://arxiv.org/abs/2007.02713)
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
```python
from typing import Dict
import numpy as np
from datasets import load_dataset
from matplotlib import cm
from PIL import Image
from torch import Tensor
from transformers import AutoImageProcessor, AutoModel
model = AutoModel.from_pretrained("RGBD-SOD/bbsnet", trust_remote_code=True)
image_processor = AutoImageProcessor.from_pretrained(
"RGBD-SOD/bbsnet", trust_remote_code=True
)
dataset = load_dataset("RGBD-SOD/test", "v1", split="train", cache_dir="data")
index = 0
"""
Get a specific sample from the dataset
sample = {
'depth': <PIL.PngImagePlugin.PngImageFile image mode=L size=640x360>,
'rgb': <PIL.PngImagePlugin.PngImageFile image mode=RGB size=640x360>,
'gt': <PIL.PngImagePlugin.PngImageFile image mode=L size=640x360>,
'name': 'COME_Train_5'
}
"""
sample = dataset[index]
depth: Image.Image = sample["depth"]
rgb: Image.Image = sample["rgb"]
gt: Image.Image = sample["gt"]
name: str = sample["name"]
"""
1. Preprocessing step
preprocessed_sample = {
'rgb': tensor([[[[-0.8507, ....0365]]]]),
'gt': tensor([[[[0., 0., 0...., 0.]]]]),
'depth': tensor([[[[0.9529, 0....3490]]]])
}
"""
preprocessed_sample: Dict[str, Tensor] = image_processor.preprocess(sample)
"""
2. Prediction step
output = {
'logits': tensor([[[[-5.1966, ...ackward0>)
}
"""
output: Dict[str, Tensor] = model(
preprocessed_sample["rgb"], preprocessed_sample["depth"]
)
"""
3. Postprocessing step
"""
postprocessed_sample: np.ndarray = image_processor.postprocess(
output["logits"], [sample["gt"].size[1], sample["gt"].size[0]]
)
prediction = Image.fromarray(np.uint8(cm.gist_earth(postprocessed_sample) * 255))
"""
Show the predicted salient map and the corresponding ground-truth(GT)
"""
prediction.show()
gt.show()
```
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
### How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Data Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
```
@inproceedings{fan2020bbs,
title={BBS-Net: RGB-D salient object detection with a bifurcated backbone strategy network},
author={Fan, Deng-Ping and Zhai, Yingjie and Borji, Ali and Yang, Jufeng and Shao, Ling},
booktitle={Computer Vision--ECCV 2020: 16th European Conference, Glasgow, UK, August 23--28, 2020, Proceedings, Part XII},
pages={275--292},
year={2020},
organization={Springer}
}
```
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]