--- language: - fi lisence: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer - fi - speech - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R 1B Wav2Vec2 Finnish by Rasmus Toivanen results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: fi metrics: - name: Test WER type: wer value: 10.96 - name: Test CER type: cer value: 2.81 --- # wav2vec2-xlsr-fi-train-aug-lm-1B This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1499 - Wer: 0.1955 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.6473 | 0.29 | 400 | 0.2857 | 0.3825 | | 0.6039 | 0.58 | 800 | 0.2459 | 0.3476 | | 0.4757 | 0.87 | 1200 | 0.2338 | 0.3274 | | 0.4473 | 1.15 | 1600 | 0.2246 | 0.3128 | | 0.4322 | 1.44 | 2000 | 0.1962 | 0.2805 | | 0.3961 | 1.73 | 2400 | 0.2070 | 0.2797 | | 0.3642 | 2.02 | 2800 | 0.1790 | 0.2473 | | 0.3561 | 2.31 | 3200 | 0.1769 | 0.2375 | | 0.282 | 2.6 | 3600 | 0.1672 | 0.2263 | | 0.2978 | 2.89 | 4000 | 0.1636 | 0.2192 | | 0.2722 | 3.17 | 4400 | 0.1637 | 0.2102 | | 0.2924 | 3.46 | 4800 | 0.1506 | 0.2021 | | 0.2631 | 3.75 | 5200 | 0.1499 | 0.1955 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0