--- license: other license_name: tongyi-qianwen license_link: https://huggingface.co/Qwen/Qwen2-Math-72B-Instruct/blob/main/LICENSE language: - en pipeline_tag: text-generation tags: - chat --- # Qwen2-Math ## Introduction Over the past year, we have dedicated significant effort to researching and enhancing the reasoning capabilities of large language models, with a particular focus on their ability to solve arithmetic and mathematical problems. Today, we are delighted to introduce a serise of math-specific large language models of our Qwen2 series, Qwen2-Math and Qwen2-Math-Instruct-1.5B/7B/72B. Qwen2-Math is a series of specialized math language models built upon the Qwen2 LLMs, which significantly outperforms the mathematical capabilities of open-source models and even closed-source models (e.g., GPT4o). We hope that Qwen2-Math can contribute to the scientific community for solving advanced mathematical problems that require complex, multi-step logical reasoning. ## Model Details For more details, please refer to our [blog post](https://qwenlm.github.io/blog/qwen2-math/) and [GitHub repo](https://github.com/QwenLM/Qwen2-Math). ## Requirements * `transformers>=4.40.0` for Qwen2-Math models. The latest version is recommended. > [!Warning] >
> > 🚨 This is a must because `transformers` integrated Qwen2 codes since `4.37.0`. > >
For requirements on GPU memory and the respective throughput, see similar results of Qwen2 [here](https://qwen.readthedocs.io/en/latest/benchmark/speed_benchmark.html). ## Quick Start > [!Important] > > **Qwen2-Math-72B-Instruct** is an instruction model for chatting; > > **Qwen2-Math-72B** is a base model typically used for completion and few-shot inference, serving as a better starting point for fine-tuning. > ### 🤗 Hugging Face Transformers Qwen2-Math can be deployed and infered in the same way as [Qwen2](https://github.com/QwenLM/Qwen2). Here we show a code snippet to show you how to use the chat model with `transformers`: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "Qwen/Qwen2-Math-72B-Instruct" device = "cuda" # the device to load the model onto model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) prompt = "Carlos is planting a lemon tree. The tree will cost $90 to plant. Each year it will grow 7 lemons, which he can sell for $1.5 each. It costs $3 a year to water and feed the tree. How many years will it take before he starts earning money on the lemon tree?" messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(device) generated_ids = model.generate( **model_inputs, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] ``` ### 🤖 ModelScope We strongly advise users especially those in mainland China to use ModelScope. `snapshot_download` can help you solve issues concerning downloading checkpoints. ## Citation If you find our work helpful, feel free to give us a cite. ``` WIP ```