---
pipeline_tag: text-generation
language:
- multilingual
inference: false
license: cc-by-nc-4.0
library_name: transformers
---
[![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory)
# QuantFactory/reader-lm-1.5b-GGUF
This is quantized version of [jinaai/reader-lm-1.5b](https://huggingface.co/jinaai/reader-lm-1.5b) created using llama.cpp
# Original Model Card
Trained by Jina AI.
# Intro Jina Reader-LM is a series of models that convert HTML content to Markdown content, which is useful for content conversion tasks. The model is trained on a curated collection of HTML content and its corresponding Markdown content. # Models | Name | Context Length | Download | |-----------------|-------------------|-----------------------------------------------------------------------| | reader-lm-0.5b | 256K | [🤗 Hugging Face](https://huggingface.co/jinaai/reader-lm-0.5b) | | reader-lm-1.5b | 256K | [🤗 Hugging Face](https://huggingface.co/jinaai/reader-lm-1.5b) | | | # Evaluation TBD # Quick Start To use this model, you need to install `transformers`: ```bash pip install transformers<=4.43.4 ``` Then, you can use the model as follows: ```python # pip install transformers from transformers import AutoModelForCausalLM, AutoTokenizer checkpoint = "jinaai/reader-lm-1.5b" device = "cuda" # for GPU usage or "cpu" for CPU usage tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device) # example html content html_content = "