--- license: apache-2.0 datasets: - PipableAI/pip-txt-to-sql-spider-bird-dataset language: - en metrics: - accuracy tags: - sql - code - text2sql - instruction_tuned - basemodel - jax - pytorch - text-generation-inference library_name: transformers pipeline_tag: text-generation widget: - text: >- CREATE TABLE system(JobID: String,GID: String, UID: String, Start:Time(yyyy/mm/dd), End: Time,ElapsedRaw: Time, CPUTimeRAW: Time,NCPUS: Number,NNodes: Number, NodeList: List, State:String, Timelimit: Time);Get UID and job id for Jobs that started on Jan 20 , 2023 ended on feb 14 2023 and has job id 20 example_title: example --- [![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory) # QuantFactory/pip-sql-1.3b-GGUF This is quantized version of [PipableAI/pip-sql-1.3b](https://huggingface.co/PipableAI/pip-sql-1.3b) created using llama.cpp # Original Model Card # pipSQL-1.3b [pipableAi](https://www.linkedin.com/company/pipable.ai/about/) [colab_notebook](https://colab.research.google.com/drive/1insSxvc3jjAXe0zmdIjmbG3ttb5mpRgQ?usp=sharing) ## What have we built? A 1.3 bn SQL model that outperforms most SQL expert models and chatgpt on popular benchmarks. This is a distilled model built on the deepseek base model. Please refer to https://huggingface.co/PipableAI/pip-library-etl-1.3b for our state of the art model. ## How we built it? We used softmax cross entropy and a modified form of policy grad along with Q loss, optimized in an EM set up. Loss behaviour in the set up mentioned above - ![image/png](https://cdn-uploads.huggingface.co/production/uploads/658d8095a2a6a6e0da8bb8a6/I80Ru1r4thoYrLagIWALa.png) ## Benchmarking : For benchmarking purposes we are using Semantic Evaluation for Text-to-SQL with Distilled Test Suites, an officially accepted evaluation framework for Spider, SParC, and CoSQL which was proposed by a research team of Yale and Berkeley. The benchmark contains 2200 test data points Here is the link to run the evaluation: [Test Suite SQL Eval](https://github.com/taoyds/test-suite-sql-eval) |model|easy|medium|hard|extra| |-----|----|------|----|-----| |sqlcoder-7b-2|72.0|58.0|40.6|37.3| |pipSQL-1.3b|78.5|57.5|42.1|28.3| |pipSQL-7b|63.0|40.0|30.2|25.0| |sqlcoder-7b|60.6|48.2|28.3|20.4| |gpt-3.5|58.8|44.7|31.0|28.4| We have also benchmarked it on defog eval. It contains 200 test data points handpicked by defog team. Here is the link to it: [Defog SQL-Eval](https://github.com/defog-ai/sql-eval) These are the results - ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64d32c6b921678fdc9de3302/fFeLSEYBNpQk_JWjFsF5M.png) ## License The model is open source under apache 2.0. License ## Usage ### Installation ```bash pip install transformers ``` ### Prompt ```python prompt = f"""{schema} {question} """ ``` ### PyTorch ```python from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" model = AutoModelForCausalLM.from_pretrained("PipableAI/pip-sql-1.3b") tokenizer = AutoTokenizer.from_pretrained("PipableAI/pip-sql-1.3b") inputs = tokenizer(text, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=200) print(tokenizer.decode(outputs[0], skip_special_tokens=True).split('')[1].split('')[0]) ``` ### Flax ```python from transformers import FlaxAutoModelForCausalLM, AutoTokenizer device = "cuda" model = FlaxAutoModelForCausalLM.from_pretrained("PipableAI/pip-sql-1.3b",from_pt=True) tokenizer = AutoTokenizer.from_pretrained("PipableAI/pip-sql-1.3b") inputs = tokenizer(text, return_tensors="jax") outputs = model.generate(**inputs, max_new_tokens=200) print(tokenizer.decode(outputs[0], skip_special_tokens=True).split('')[1].split('')[0]) ``` ## Examples ### Schema ```sql CREATE TABLE Products ( product_id number, parent_product_id number, product_name text, product_price number, product_color text, product_size text, product_description text); CREATE TABLE Customers ( customer_id number, gender_code text, customer_first_name text, customer_middle_initial text, customer_last_name text, email_address text, login_name text, login_password text, phone_number text, address_line_1 text, town_city text, county text, country text); CREATE TABLE Customer_Payment_Methods ( customer_id number, payment_method_code text); CREATE TABLE Invoices ( invoice_number number, invoice_status_code text, invoice_date time); CREATE TABLE Orders ( order_id number, customer_id number, order_status_code text, date_order_placed time); CREATE TABLE Order_Items ( order_item_id number, product_id number, order_id number, order_item_status_code text); CREATE TABLE Shipments ( shipment_id number, order_id number, invoice_number number, shipment_tracking_number text, shipment_date time); CREATE TABLE Shipment_Items ( shipment_id number, order_item_id number); ``` ### Questions What are the email address, town and county of the customers who are of the least common gender? ```sql SELECT email_address , town_city , county FROM customers GROUP BY gender_code ORDER BY count(*) ASC LIMIT 1 ``` What are the product price and the product size of the products whose price is above average? ```sql SELECT product_price , product_size FROM products WHERE product_price > (SELECT avg(product_price) FROM products) ``` Which customers did not make any orders? List the first name, middle initial and last name. ```sql SELECT T1.customer_first_name , T1.customer_middle_initial , T1.customer_last_name FROM Customers AS T1 WHERE T1.customer_id NOT IN (SELECT T2.customer_id FROM Orders AS T2) ``` ### Team Avi Kothari, Pratham Gupta, Ritvik Aryan Kalra, Rohan Bhatial, Soham Acharya