--- license: apache-2.0 tags: - Safetensors - mistral - text-generation-inference - merge - mistral - 7b - mistralai/Mistral-7B-Instruct-v0.1 - athirdpath/NSFW_DPO_Noromaid-7b - transformers - safetensors - mistral - text-generation - en - dataset:athirdpath/DPO_Pairs-Roleplay-Alpaca-NSFW-v2 - dataset:athirdpath/DPO_Pairs-Roleplay-Alpaca-NSFW - license:cc-by-nc-4.0 - autotrain_compatible - endpoints_compatible - has_space - text-generation-inference - region:us --- [![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory) # QuantFactory/NSFW_DPO_Noromaid-7b-Mistral-7B-Instruct-v0.1-GGUF This is quantized version of [MaziyarPanahi/NSFW_DPO_Noromaid-7b-Mistral-7B-Instruct-v0.1](https://huggingface.co/MaziyarPanahi/NSFW_DPO_Noromaid-7b-Mistral-7B-Instruct-v0.1) created using llama.cpp # Original Model Card # NSFW_DPO_Noromaid-7b-Mistral-7B-Instruct-v0.1 NSFW_DPO_Noromaid-7b-Mistral-7B-Instruct-v0.1 is a merge of the following models: * [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) * [athirdpath/NSFW_DPO_Noromaid-7b](https://huggingface.co/athirdpath/NSFW_DPO_Noromaid-7b) ## 🧩 Configuration ```yaml slices: - sources: - model: mistralai/Mistral-7B-Instruct-v0.1 layer_range: [0, 32] - model: athirdpath/NSFW_DPO_Noromaid-7b layer_range: [0, 32] merge_method: slerp base_model: mistralai/Mistral-7B-Instruct-v0.1 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "MaziyarPanahi/NSFW_DPO_Noromaid-7b-Mistral-7B-Instruct-v0.1" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```