--- license: cc-by-nc-4.0 language: - en pipeline_tag: text-generation base_model: Sao10K/L3-8B-Stheno-v3.3-32K --- # QuantFactory/L3-8B-Stheno-v3.3-32K-GGUF This is quantized version of [Sao10K/L3-8B-Stheno-v3.3-32K](https://huggingface.co/Sao10K/L3-8B-Stheno-v3.3-32K) created using llama.cpp # Model Description Trained with compute from [Backyard.ai](https://backyard.ai/) Training Details:
Trained at 8K Context -> Expanded to 32K Context with PoSE training. Dataset Modifications:
\- Further Cleaned up Roleplaying Samples -> Quality Check
\- Removed Low Quality Samples from Manual Check -> Increased Baseline Quality Floor
\- More Creative Writing Samples -> 2x Samples
\- Remade and Refined Detailed Instruct Data Notes:
\- Training run is much less aggressive than previous Stheno versions.
\- This model works when tested in bf16 with the same configs as within the file.
\- I do not know the effects quantisation has on it.
\- Roleplays pretty well. Feels nice in my opinion.
\- It has some issues on long context understanding and reasoning. Much better vs rope scaling normally though, so that is a plus.
\- Reminder, this isn't a native 32K model. It has it's issues, but it's coherent and working well. Sanity Check // Needle in a Haystack Results:
\- This is not as complex as RULER or NIAN, but it's a basic evaluator. Some improper train examples had Haystack scores ranging from Red to Orange for most of the extended contexts. ![Results](https://huggingface.co/Sao10K/L3-8B-Stheno-v3.3-32K/resolve/main/haystack.png) Wandb Run: ![Wandb](https://huggingface.co/Sao10K/L3-8B-Stheno-v3.3-32K/resolve/main/wandb.png) --- Relevant Axolotl Configurations:
-> Taken from [winglian/Llama-3-8b-64k-PoSE](https://huggingface.co/winglian/Llama-3-8b-64k-PoSE)
\- I tried to find my own configs, hours of tinkering but the one he used worked best, so I stuck to it.
\- 2M Rope Theta had the best loss results during training compared to other values.
\- Leaving it at 500K rope wasn't that much worse, but 4M and 8M Theta made the grad_norm values worsen even if loss drops fast.
\- Mixing in Pretraining Data was a PITA. Made it a lot worse with formatting.
\- Pretraining / Noise made it worse at Haystack too? It wasn't all Green, Mainly Oranges.
\- Improper / Bad Rope Theta shows in Grad_Norm exploding to thousands. It'll drop to low values alright, but it's a scary fast drop even with gradient clipping. ``` sequence_len: 8192 use_pose: true pose_max_context_len: 32768 overrides_of_model_config: rope_theta: 2000000.0 max_position_embeddings: 32768 # peft_use_dora: true adapter: lora peft_use_rslora: true lora_model_dir: lora_r: 256 lora_alpha: 256 lora_dropout: 0.1 lora_target_linear: true lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj warmup_steps: 80 gradient_accumulation_steps: 6 micro_batch_size: 1 num_epochs: 2 optimizer: adamw_bnb_8bit lr_scheduler: cosine_with_min_lr learning_rate: 0.00004 lr_scheduler_kwargs: min_lr: 0.000004 ```