library_name: transformers
tags:
- mergekit
- merge
base_model:
- ifable/gemma-2-Ifable-9B
- jsgreenawalt/gemma-2-9B-it-advanced-v2.1
model-index:
- name: Gemma-2-Ataraxy-v2-9B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 21.36
name: strict accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=lemon07r/Gemma-2-Ataraxy-v2-9B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 39.8
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=lemon07r/Gemma-2-Ataraxy-v2-9B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 0.83
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=lemon07r/Gemma-2-Ataraxy-v2-9B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 12.3
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=lemon07r/Gemma-2-Ataraxy-v2-9B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 4.88
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=lemon07r/Gemma-2-Ataraxy-v2-9B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 35.79
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=lemon07r/Gemma-2-Ataraxy-v2-9B
name: Open LLM Leaderboard
QuantFactory/Gemma-2-Ataraxy-v2-9B-GGUF
This is quantized version of lemon07r/Gemma-2-Ataraxy-v2-9B created using llama.cpp
Original Model Card
Gemma 2 Ataraxy v2 9B
Finally, after much testing, a sucessor to the first Gemma 2 Ataraxy 9B. Same kind of recipe, using the same principles, same concept as the last Ataraxy but using better models this time.
GGUF / EXL2 Quants
Bartowski quants (imatrix): https://huggingface.co/bartowski/Gemma-2-Ataraxy-v2-9B-GGUF
Mradermacher quants (static): https://huggingface.co/mradermacher/Gemma-2-Ataraxy-v2-9B-GGUF
Mradermacher quants (imatrix): https://huggingface.co/mradermacher/Gemma-2-Ataraxy-v2-9B-i1-GGUF
Bartowski and mradermacher use different calibration data for their imatrix quants I believe, and the static quant of course uses none. Pick your poison.
More coming soon.
Format
Use Gemma 2 format.
Merge Details
Merge Method
This model was merged using the SLERP merge method.
Models Merged
This is a merge of pre-trained language models created using mergekit.
The following models were included in the merge:
Configuration
The following YAML configuration was used to produce this model:
base_model: ifable/gemma-2-Ifable-9B
dtype: bfloat16
merge_method: slerp
parameters:
t:
- filter: self_attn
value: [0.0, 0.5, 0.3, 0.7, 1.0]
- filter: mlp
value: [1.0, 0.5, 0.7, 0.3, 0.0]
- value: 0.5
slices:
- sources:
- layer_range: [0, 42]
model: jsgreenawalt/gemma-2-9B-it-advanced-v2.1
- layer_range: [0, 42]
model: ifable/gemma-2-Ifable-9B
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 19.16 |
IFEval (0-Shot) | 21.36 |
BBH (3-Shot) | 39.80 |
MATH Lvl 5 (4-Shot) | 0.83 |
GPQA (0-shot) | 12.30 |
MuSR (0-shot) | 4.88 |
MMLU-PRO (5-shot) | 35.79 |
Second highest ranked open weight model in EQ-Bench.