--- license: mit datasets: - QizhiPei/BioT5_finetune_dataset language: - en --- ## Example Usage ```python from transformers import T5Tokenizer, T5ForConditionalGeneration def add_prefix_to_amino_acids(protein_sequence): amino_acids = list(protein_sequence) prefixed_amino_acids = ['
' + aa for aa in amino_acids]
new_sequence = ''.join(prefixed_amino_acids)
return new_sequence
tokenizer = T5Tokenizer.from_pretrained("QizhiPei/biot5-base-dti-human", model_max_length=512)
model = T5ForConditionalGeneration.from_pretrained('QizhiPei/biot5-base-dti-human')
task_definition = 'Definition: Drug target interaction prediction task (a binary classification task) for the human dataset. If the given molecule and protein can interact with each other, indicate via "Yes". Otherwise, response via "No".\n\n'
selfies_input = '[C][/C][=C][Branch1][C][\\C][C][=Branch1][C][=O][O]'
protein_input = 'MQALRVSQALIRSFSSTARNRFQNRVREKQKLFQEDNDIPLYLKGGIVDNILYRVTMTLCLGGTVYSLYSLGWASFPRN'
protein_input = add_prefix_to_amino_acids(protein_input)
task_input = f'Now complete the following example -\nInput: Molecule: