--- license: apache-2.0 language: - en pipeline_tag: sentence-similarity --- ONNX port of [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) adjusted to return attention weights. To be used for [BM42 searches](https://qdrant.tech/articles/bm42/). > Note: This model is supposed to be used with Qdrant. Vectors have to be configured with [Modifier.IDF](https://qdrant.tech/documentation/concepts/indexing/?q=modifier#idf-modifier). ### Usage Here's an example of performing inference using the model with [FastEmbed](https://github.com/qdrant/fastembed). ```py from fastembed import SparseTextEmbedding documents = [ "You should stay, study and sprint.", "History can only prepare us to be surprised yet again.", ] model = SparseTextEmbedding(model_name="Qdrant/bm42-all-minilm-l6-v2-attentions") embeddings = list(model.embed(documents)) # [ # SparseEmbedding(values=array([0.26399775, 0.24662513, 0.47077307]), # indices=array([1881538586, 150760872, 1932363795])), # SparseEmbedding(values=array( # [0.38320042, 0.25453135, 0.18017513, 0.30432631, 0.1373556]), # indices=array([ # 733618285, 1849833631, 1008800696, 2090661150, # 1117393019 # ])) # ] ```