--- library_name: transformers license: apache-2.0 base_model: mistralai/Mistral-Nemo-Base-2407 tags: - axolotl - generated_from_trainer model-index: - name: pyg3v1-nemo-3ep-ckpts results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: mistralai/Mistral-Nemo-Base-2407 model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: false strict: false plugins: - axolotl.integrations.liger.LigerPlugin liger_rope: true liger_rms_norm: true liger_swiglu: true liger_fused_linear_cross_entropy: true chat_template: chatml datasets: - path: PygTesting/pyg3v1 type: sharegpt conversation: chatml hub_model_id: PygTesting/pyg3v1-nemo-3ep-ckpts hub_strategy: every_save hf_use_auth_token: true dataset_prepared_path: ./data/pyg3v1-data/tokenized val_set_size: 0.0 output_dir: ./data/pyg3v1-nemo-2eps-out sequence_len: 8192 sample_packing: true #eval_sample_packing: false pad_to_sequence_len: true wandb_project: pyg3v1-nemo wandb_entity: wandb_watch: wandb_name: more_eps_lower_lr wandb_log_model: #unsloth_cross_entropy_loss: true gradient_accumulation_steps: 4 micro_batch_size: 4 num_epochs: 3 optimizer: adamw_torch_fused lr_scheduler: cosine learning_rate: 0.0000075 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false early_stopping_patience: resume_from_checkpoint: logging_steps: 1 xformers_attention: flash_attention: true warmup_ratio: 0.03 evals_per_epoch: 0 eval_table_size: saves_per_epoch: 3 debug: deepspeed: deepspeed_configs/zero1.json weight_decay: 0.01 fsdp: fsdp_config: special_tokens: pad_token: ```

# pyg3v1-nemo-3ep-ckpts This model is a fine-tuned version of [mistralai/Mistral-Nemo-Base-2407](https://huggingface.co/mistralai/Mistral-Nemo-Base-2407) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 29 - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.45.0.dev0 - Pytorch 2.4.0+rocm6.1 - Datasets 2.21.0 - Tokenizers 0.19.1