import torch import torch.nn as nn # Define a simple neural network model class SimpleModel(nn.Module): def __init__(self): super(SimpleModel, self).__init__() self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1) # Example Conv layer self.fc1 = nn.Linear(16*4*4, 10) # Flattening the 4D tensor to 2D for a fully connected layer def forward(self, x): x = self.conv1(x) x = torch.relu(x) x = x.view(x.size(0), -1) # Flatten for the fully connected layer x = self.fc1(x) return x # Example of creating tensors for input tensor1 = torch.rand(2, 3, 4, 4) tensor2 = torch.rand(2, 3, 4, 4) tensor3 = torch.rand(2, 3, 4, 4) # Adding tensors input_tensor = tensor1 + tensor2 + tensor3 # Initialize the model model = SimpleModel() # Forward pass through the model output = model(input_tensor) print(output)