--- license: apache-2.0 language: - fr library_name: transformers tags: - NMT - orféo - pytorch - pictograms - translation metrics: - sacrebleu inference: false --- # t2p-nmt-orfeo *t2p-nmt-orfeo* is a text-to-pictograms translation model built by training from scratch the [NMT](https://github.com/facebookresearch/fairseq/blob/main/examples/translation/README.md) model on a dataset of pairs of transcriptions / pictogram token sequence (each token is linked to a pictogram image from [ARASAAC](https://arasaac.org/)). The model is used only for **inference**. ## Training details The model was trained with [Fairseq](https://github.com/facebookresearch/fairseq/blob/main/examples/translation/README.md). ### Datasets The [Propicto-orféo dataset](https://www.ortolang.fr/market/corpora/propicto) is used, which was created from the CEFC-Orféo corpus. This dataset was presented in the research paper titled ["A Multimodal French Corpus of Aligned Speech, Text, and Pictogram Sequences for Speech-to-Pictogram Machine Translation](https://aclanthology.org/2024.lrec-main.76/)" at LREC-Coling 2024. The dataset was split into training, validation, and test sets. | **Split** | **Number of utterances** | |:-----------:|:-----------------------:| | train | 231,374 | | valid | 28,796 | | test | 29,009 | ### Parameters This is the arguments in the training pipeline : ```bash fairseq-train \ data-bin/orfeo.tokenized.fr-frp \ --arch transformer_iwslt_de_en --share-decoder-input-output-embed \ --optimizer adam --adam-betas '(0.9, 0.98)' --clip-norm 0.0 \ --lr 5e-4 --lr-scheduler inverse_sqrt --warmup-updates 4000 \ --dropout 0.3 --weight-decay 0.0001 \ --save-dir exp_orfeo/checkpoints/nmt_fr_frp_orfeo \ --criterion label_smoothed_cross_entropy --label-smoothing 0.1 \ --max-tokens 4096 \ --eval-bleu \ --eval-bleu-args '{"beam": 5, "max_len_a": 1.2, "max_len_b": 10}' \ --eval-bleu-detok moses \ --eval-bleu-remove-bpe \ --eval-bleu-print-samples \ --best-checkpoint-metric bleu --maximize-best-checkpoint-metric \ --max-epoch 40 \ --keep-best-checkpoints 5 \ --keep-last-epochs 5 ``` ### Evaluation The model was evaluated with sacreBLEU, where we compared the reference pictogram translation with the model hypothesis. ```bash fairseq-generate exp_orfeo/data-bin/orfeo.tokenized.fr-frp \ --path exp_orfeo/checkpoints/nmt_fr_frp_orfeo/checkpoint.best_bleu_87.2803.pt \ --batch-size 128 --beam 5 --remove-bpe > gen_orfeo.out ``` The output file prints the following information : ```txt S-16709 peut-être vous pouvez vous exprimer T-16709 vous pouvoir exprimer H-16709 -0.0769597738981247 vous pouvoir exprimer D-16709 -0.0769597738981247 vous pouvoir exprimer P-16709 -0.0936 -0.0924 -0.0065 -0.1154 Generate test with beam=5: BLEU4 = 87.43, 95.2/89.8/85.0/80.4 (BP=1.000, ratio=1.006, syslen=250949, reflen=249520) ``` ### Results Comparison to other translation models : | **Model** | **validation** | **test** | |:-----------:|:-----------------------:|:-----------------------:| | t2p-t5-large-orféo | 85.2 | 85.8 | | **t2p-nmt-orféo** | **87.2** | **87.4** | | t2p-mbart-large-cc25-orfeo | 75.2 | 75.6 | | t2p-nllb-200-distilled-600M-orfeo | 86.3 | 86.9 | ### Environmental Impact Training was performed using a single Nvidia V100 GPU with 32 GB of memory which took around 2 hours in total. ## Using t2p-nmt-orfeo model The scripts to use the *t2p-nmt-orfeo* model are located in the [speech-to-pictograms GitHub repository](https://github.com/macairececile/speech-to-pictograms). ## Information - **Language(s):** French - **License:** Apache-2.0 - **Developed by:** Cécile Macaire - **Funded by** - GENCI-IDRIS (Grant 2023-AD011013625R1) - PROPICTO ANR-20-CE93-0005 - **Authors** - Cécile Macaire - Chloé Dion - Emmanuelle Esperança-Rodier - Benjamin Lecouteux - Didier Schwab ## Citation If you use this model for your own research work, please cite as follows: ```bibtex @inproceedings{macaire_jeptaln2024, title = {{Approches cascade et de bout-en-bout pour la traduction automatique de la parole en pictogrammes}}, author = {Macaire, C{\'e}cile and Dion, Chlo{\'e} and Schwab, Didier and Lecouteux, Benjamin and Esperan{\c c}a-Rodier, Emmanuelle}, url = {https://inria.hal.science/hal-04623007}, booktitle = {{35{\`e}mes Journ{\'e}es d'{\'E}tudes sur la Parole (JEP 2024) 31{\`e}me Conf{\'e}rence sur le Traitement Automatique des Langues Naturelles (TALN 2024) 26{\`e}me Rencontre des {\'E}tudiants Chercheurs en Informatique pour le Traitement Automatique des Langues (RECITAL 2024)}}, address = {Toulouse, France}, publisher = {{ATALA \& AFPC}}, volume = {1 : articles longs et prises de position}, pages = {22-35}, year = {2024} } ```