[model_arguments] v2 = true v_parameterization = true pretrained_model_name_or_path = "/content/pretrained_model/Replicant-V3.0_fp16.safetensors" [optimizer_arguments] min_snr_gamma = 5 optimizer_type = "AdamW8bit" learning_rate = 1e-6 max_grad_norm = 1.0 train_text_encoder = true lr_scheduler = "constant" lr_warmup_steps = 0 [dataset_arguments] debug_dataset = false in_json = "/content/fine_tune/config/meta_lat.json" train_data_dir = "/content/fine_tune/train_data" dataset_repeats = 1 shuffle_caption = true keep_tokens = 0 resolution = "768,768" caption_dropout_rate = 0 caption_tag_dropout_rate = 0 caption_dropout_every_n_epochs = 0 color_aug = false token_warmup_min = 1 token_warmup_step = 0 [training_arguments] output_dir = "/content/fine_tune/output" output_name = "regainer-v0" save_precision = "fp16" save_n_epoch_ratio = 1 save_state = true train_batch_size = 1 max_token_length = 225 mem_eff_attn = false xformers = true max_train_steps = 3640 max_data_loader_n_workers = 8 persistent_data_loader_workers = true gradient_checkpointing = false gradient_accumulation_steps = 1 mixed_precision = "fp16" logging_dir = "/content/fine_tune/logs" log_prefix = "regainer-v0" noise_offset = 0.12 [sample_prompt_arguments] sample_every_n_steps = 100 sample_sampler = "ddim" [saving_arguments] save_model_as = "safetensors"