Update README.md
Browse files
README.md
CHANGED
@@ -2,65 +2,54 @@
|
|
2 |
license: apache-2.0
|
3 |
---
|
4 |
|
5 |
-
|
6 |
# BEN - Background Erase Network
|
7 |
|
8 |
BEN is a deep learning model designed to automatically remove backgrounds from images, producing both a mask and a foreground image.
|
9 |
|
10 |
-
|
11 |
# BEN SOA Benchmarks on Disk 5k Eval
|
12 |
|
13 |
-
BEN_Base + BEN_Refiner (
|
14 |
-
MAE
|
15 |
-
DICE
|
16 |
-
IOU
|
17 |
-
BER
|
18 |
-
ACC
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
ACC-0.9660 \n
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
|
39 |
## Features
|
40 |
-
|
41 |
- Background removal from images
|
42 |
- Generates both binary mask and foreground image
|
43 |
- CUDA support for GPU acceleration
|
44 |
- Simple API for easy integration
|
45 |
|
46 |
## Installation
|
47 |
-
|
48 |
-
|
49 |
|
50 |
## Quick Start Code
|
|
|
51 |
from BEN import BEN_Base
|
52 |
from PIL import Image
|
53 |
import torch
|
54 |
|
55 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
56 |
-
|
57 |
-
|
58 |
model = BEN_Base().to(device).eval()
|
59 |
model.loadcheckpoints("./BEN/BEN_Base.pth")
|
60 |
|
61 |
image = Image.open("./image2.jpg")
|
62 |
mask, foreground = model.inference(image)
|
63 |
-
|
64 |
mask.save("./mask.png")
|
65 |
-
foreground.save("./foreground.png")
|
66 |
-
|
|
|
2 |
license: apache-2.0
|
3 |
---
|
4 |
|
|
|
5 |
# BEN - Background Erase Network
|
6 |
|
7 |
BEN is a deep learning model designed to automatically remove backgrounds from images, producing both a mask and a foreground image.
|
8 |
|
|
|
9 |
# BEN SOA Benchmarks on Disk 5k Eval
|
10 |
|
11 |
+
### BEN_Base + BEN_Refiner (commercial model please contact us for more information):
|
12 |
+
- MAE: 0.0283
|
13 |
+
- DICE: 0.8976
|
14 |
+
- IOU: 0.8430
|
15 |
+
- BER: 0.0542
|
16 |
+
- ACC: 0.9725
|
17 |
+
|
18 |
+
### BEN_Base:
|
19 |
+
- MAE: 0.0331
|
20 |
+
- DICE: 0.8743
|
21 |
+
- IOU: 0.8301
|
22 |
+
- BER: 0.0560
|
23 |
+
- ACC: 0.9700
|
24 |
+
|
25 |
+
### MVANet (old SOA):
|
26 |
+
- MAE: 0.0353
|
27 |
+
- DICE: 0.8676
|
28 |
+
- IOU: 0.8104
|
29 |
+
- BER: 0.0639
|
30 |
+
- ACC: 0.9660
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
## Features
|
|
|
33 |
- Background removal from images
|
34 |
- Generates both binary mask and foreground image
|
35 |
- CUDA support for GPU acceleration
|
36 |
- Simple API for easy integration
|
37 |
|
38 |
## Installation
|
39 |
+
1. Clone Repo
|
40 |
+
2. Install requirements.txt
|
41 |
|
42 |
## Quick Start Code
|
43 |
+
```python
|
44 |
from BEN import BEN_Base
|
45 |
from PIL import Image
|
46 |
import torch
|
47 |
|
48 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
|
|
49 |
model = BEN_Base().to(device).eval()
|
50 |
model.loadcheckpoints("./BEN/BEN_Base.pth")
|
51 |
|
52 |
image = Image.open("./image2.jpg")
|
53 |
mask, foreground = model.inference(image)
|
|
|
54 |
mask.save("./mask.png")
|
55 |
+
foreground.save("./foreground.png")
|
|