--- library_name: transformers tags: - mergekit - merge license: apache-2.0 --- # LlumiLuminRP-8B-Instruct-262k-v0.3 ![1715297915105.png](https://cdn-uploads.huggingface.co/production/uploads/65f158693196560d34495d54/SoMXojKFU1ZseLPfalfy0.png) *** ## Description LlumiLuminRP-8B-Instruct-262k-v0.3 is a Llama-3 derivative 8B instruct model that focuses on roleplaying. This model is the result of merging a bunch of Llama-3-8B RP/ERP models using the model_stock method and is using a context window of 262k. *** ## Quants [mradermacher](https://huggingface.co/mradermacher): [LlumiLuminRP-8B-Instruct-262k-v0.3-GGUF](https://huggingface.co/mradermacher/LlumiLuminRP-8B-Instruct-262k-v0.3-GGUF) [mradermacher](https://huggingface.co/mradermacher): [LlumiLuminRP-8B-Instruct-262k-v0.3-i1-GGUF](https://huggingface.co/mradermacher/LlumiLuminRP-8B-Instruct-262k-v0.3-i1-GGUF) *** ## Response Examlple **Context Template**: Default Llama-3-Instruct **Instruct Mode**: Default Llama-3-Instruct *** ![1715323638943.jpg](https://cdn-uploads.huggingface.co/production/uploads/65f158693196560d34495d54/5XsVhgczJ4mTFqXgYuymF.jpeg) *** ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Ppoyaa/LlumiLuminRP-8B-Instruct-262k-v0.3" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```