--- license: cc-by-nc-sa-4.0 datasets: - Posos/MedNERF metrics: - f1 tags: - medical widget: - text: xeplion 50mg 2 fois par jour - text: doliprane 500 1 comprimé effervescent le matin pendant une semaine model-index: - name: Posos/ClinicalNER results: - task: type: token-classification name: Clinical NER dataset: type: Posos/MedNERF name: MedNERF split: test # Optional. Example: test metrics: - type: f1 value: 0.804 name: micro-F1 score - type: precision value: 0.817 name: precision - type: recall value: 0.791 name: recall - type: accuracy value: 0.859 name: accuracy --- # ClinicalNER ## Model Description This is a multilingual clinical NER model extracting DRUG, STRENGTH, FREQUENCY, DURATION, DOSAGE and FORM entities from a medical text. ## Evaluation Metrics on [MedNERF dataset](https://huggingface.co/datasets/Posos/MedNERF) - Loss: 0.692 - Accuracy: 0.859 - Precision: 0.817 - Recall: 0.791 - micro-F1: 0.804 - macro-F1: 0.819 ## Usage ``` from transformers import AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("Posos/ClinicalNER") tokenizer = AutoTokenizer.from_pretrained("Posos/ClinicalNER") inputs = tokenizer("Take 2 pills every morning", return_tensors="pt") outputs = model(**inputs) ``` ## Citation information ``` @inproceedings{mednerf, title = "Multilingual Clinical NER: Translation or Cross-lingual Transfer?", author = "Gaschi, Félix and Fontaine, Xavier and Rastin, Parisa and Toussaint, Yannick", booktitle = "Proceedings of the 5th Clinical Natural Language Processing Workshop", publisher = "Association for Computational Linguistics", year = "2023" } ```