--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-Coder-0.5B tags: - generated_from_trainer model-index: - name: sparql-qwen results: [] --- # sparql-qwen This model is a fine-tuned version of [Qwen/Qwen2.5-Coder-0.5B](https://huggingface.co/Qwen/Qwen2.5-Coder-0.5B) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6232 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:-----:|:---------------:| | 0.7485 | 0.1048 | 500 | 0.8336 | | 0.7336 | 0.2096 | 1000 | 0.7696 | | 0.6787 | 0.3143 | 1500 | 0.7376 | | 0.6756 | 0.4191 | 2000 | 0.7190 | | 0.6651 | 0.5239 | 2500 | 0.7038 | | 0.6835 | 0.6287 | 3000 | 0.6932 | | 0.6572 | 0.7334 | 3500 | 0.6810 | | 0.6664 | 0.8382 | 4000 | 0.6773 | | 0.6304 | 0.9430 | 4500 | 0.6675 | | 0.7408 | 1.0478 | 5000 | 0.6648 | | 0.7004 | 1.1526 | 5500 | 0.6616 | | 0.6466 | 1.2573 | 6000 | 0.6579 | | 0.6914 | 1.3621 | 6500 | 0.6543 | | 0.6885 | 1.4669 | 7000 | 0.6507 | | 0.6508 | 1.5717 | 7500 | 0.6478 | | 0.7039 | 1.6764 | 8000 | 0.6442 | | 0.665 | 1.7812 | 8500 | 0.6436 | | 0.6483 | 1.8860 | 9000 | 0.6405 | | 0.699 | 1.9908 | 9500 | 0.6373 | | 0.4961 | 2.0956 | 10000 | 0.6380 | | 0.5103 | 2.2003 | 10500 | 0.6367 | | 0.5443 | 2.3051 | 11000 | 0.6349 | | 0.4813 | 2.4099 | 11500 | 0.6340 | | 0.5555 | 2.5147 | 12000 | 0.6324 | | 0.5711 | 2.6194 | 12500 | 0.6313 | | 0.5088 | 2.7242 | 13000 | 0.6309 | | 0.492 | 2.8290 | 13500 | 0.6297 | | 0.4936 | 2.9338 | 14000 | 0.6267 | | 0.6411 | 3.0386 | 14500 | 0.6271 | | 0.6618 | 3.1433 | 15000 | 0.6267 | | 0.6212 | 3.2481 | 15500 | 0.6260 | | 0.6337 | 3.3529 | 16000 | 0.6253 | | 0.6412 | 3.4577 | 16500 | 0.6234 | | 0.6208 | 3.5624 | 17000 | 0.6232 | | 0.676 | 3.6672 | 17500 | 0.6226 | | 0.6465 | 3.7720 | 18000 | 0.6217 | | 0.6157 | 3.8768 | 18500 | 0.6210 | | 0.6622 | 3.9816 | 19000 | 0.6200 | | 0.4811 | 4.0863 | 19500 | 0.6219 | | 0.5264 | 4.1911 | 20000 | 0.6213 | | 0.4738 | 4.2959 | 20500 | 0.6232 | ### Framework versions - PEFT 0.14.0 - Transformers 4.46.3 - Pytorch 2.4.0 - Datasets 3.1.0 - Tokenizers 0.20.3