--- base_model: arnabdhar/tinybert-ner tags: - generated_from_trainer datasets: - ncbi_disease metrics: - precision - recall - f1 - accuracy model-index: - name: checkpoint-1000 results: - task: name: Token Classification type: token-classification dataset: name: ncbi_disease type: ncbi_disease config: ncbi_disease split: test args: ncbi_disease metrics: - name: Precision type: precision value: 0.4722222222222222 - name: Recall type: recall value: 0.40729166666666666 - name: F1 type: f1 value: 0.43736017897091717 - name: Accuracy type: accuracy value: 0.9466873494713638 --- # checkpoint-1000 This model is a fine-tuned version of [arnabdhar/tinybert-ner](https://huggingface.co/arnabdhar/tinybert-ner) on the ncbi_disease dataset. It achieves the following results on the evaluation set: - Loss: 0.1611 - Precision: 0.4722 - Recall: 0.4073 - F1: 0.4374 - Accuracy: 0.9467 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 340 | 0.2055 | 0.2744 | 0.1521 | 0.1957 | 0.9318 | | 0.2656 | 2.0 | 680 | 0.1761 | 0.4051 | 0.3 | 0.3447 | 0.9417 | | 0.1738 | 3.0 | 1020 | 0.1638 | 0.4582 | 0.4 | 0.4271 | 0.9455 | | 0.1738 | 4.0 | 1360 | 0.1611 | 0.4722 | 0.4073 | 0.4374 | 0.9467 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0