weight = None resume = False evaluate = True test_only = False seed = 28024989 save_path = 'exp/nuscenes/semseg-pt-v3m1-0-base' num_worker = 16 batch_size = 12 batch_size_val = None batch_size_test = None epoch = 50 eval_epoch = 50 sync_bn = False enable_amp = True empty_cache = False find_unused_parameters = False mix_prob = 0.8 param_dicts = [dict(keyword='block', lr=0.0002)] hooks = [ dict(type='CheckpointLoader'), dict(type='IterationTimer', warmup_iter=2), dict(type='InformationWriter'), dict(type='SemSegEvaluator'), dict(type='CheckpointSaver', save_freq=None), dict(type='PreciseEvaluator', test_last=False) ] train = dict(type='DefaultTrainer') test = dict(type='SemSegTester', verbose=True) model = dict( type='DefaultSegmentorV2', num_classes=16, backbone_out_channels=64, backbone=dict( type='PT-v3m1', in_channels=4, order=['z', 'z-trans', 'hilbert', 'hilbert-trans'], stride=(2, 2, 2, 2), enc_depths=(2, 2, 2, 6, 2), enc_channels=(32, 64, 128, 256, 512), enc_num_head=(2, 4, 8, 16, 32), enc_patch_size=(1024, 1024, 1024, 1024, 1024), dec_depths=(2, 2, 2, 2), dec_channels=(64, 64, 128, 256), dec_num_head=(4, 4, 8, 16), dec_patch_size=(1024, 1024, 1024, 1024), mlp_ratio=4, qkv_bias=True, qk_scale=None, attn_drop=0.0, proj_drop=0.0, drop_path=0.3, shuffle_orders=True, pre_norm=True, enable_rpe=False, enable_flash=True, upcast_attention=False, upcast_softmax=False, cls_mode=False, pdnorm_bn=False, pdnorm_ln=False, pdnorm_decouple=True, pdnorm_adaptive=False, pdnorm_affine=True, pdnorm_conditions=('nuScenes', 'SemanticKITTI', 'Waymo')), criteria=[ dict(type='CrossEntropyLoss', loss_weight=1.0, ignore_index=-1), dict( type='LovaszLoss', mode='multiclass', loss_weight=1.0, ignore_index=-1) ]) optimizer = dict(type='AdamW', lr=0.002, weight_decay=0.005) scheduler = dict( type='OneCycleLR', max_lr=[0.002, 0.0002], pct_start=0.04, anneal_strategy='cos', div_factor=10.0, final_div_factor=100.0) dataset_type = 'NuScenesDataset' data_root = 'data/nuscenes' ignore_index = -1 names = [ 'barrier', 'bicycle', 'bus', 'car', 'construction_vehicle', 'motorcycle', 'pedestrian', 'traffic_cone', 'trailer', 'truck', 'driveable_surface', 'other_flat', 'sidewalk', 'terrain', 'manmade', 'vegetation' ] data = dict( num_classes=16, ignore_index=-1, names=[ 'barrier', 'bicycle', 'bus', 'car', 'construction_vehicle', 'motorcycle', 'pedestrian', 'traffic_cone', 'trailer', 'truck', 'driveable_surface', 'other_flat', 'sidewalk', 'terrain', 'manmade', 'vegetation' ], train=dict( type='NuScenesDataset', split='train', data_root='data/nuscenes', transform=[ dict( type='RandomRotate', angle=[-1, 1], axis='z', center=[0, 0, 0], p=0.5), dict(type='RandomScale', scale=[0.9, 1.1]), dict(type='RandomFlip', p=0.5), dict(type='RandomJitter', sigma=0.005, clip=0.02), dict( type='GridSample', grid_size=0.05, hash_type='fnv', mode='train', keys=('coord', 'strength', 'segment'), return_grid_coord=True), dict(type='ToTensor'), dict( type='Collect', keys=('coord', 'grid_coord', 'segment'), feat_keys=('coord', 'strength')) ], test_mode=False, ignore_index=-1, loop=1), val=dict( type='NuScenesDataset', split='val', data_root='data/nuscenes', transform=[ dict( type='GridSample', grid_size=0.05, hash_type='fnv', mode='train', keys=('coord', 'strength', 'segment'), return_grid_coord=True), dict(type='ToTensor'), dict( type='Collect', keys=('coord', 'grid_coord', 'segment'), feat_keys=('coord', 'strength')) ], test_mode=False, ignore_index=-1), test=dict( type='NuScenesDataset', split='val', data_root='data/nuscenes', transform=[ dict(type='Copy', keys_dict=dict(segment='origin_segment')), dict( type='GridSample', grid_size=0.025, hash_type='fnv', mode='train', keys=('coord', 'strength', 'segment'), return_inverse=True) ], test_mode=True, test_cfg=dict( voxelize=dict( type='GridSample', grid_size=0.05, hash_type='fnv', mode='test', return_grid_coord=True, keys=('coord', 'strength')), crop=None, post_transform=[ dict(type='ToTensor'), dict( type='Collect', keys=('coord', 'grid_coord', 'index'), feat_keys=('coord', 'strength')) ], aug_transform=[[{ 'type': 'RandomScale', 'scale': [0.9, 0.9] }], [{ 'type': 'RandomScale', 'scale': [0.95, 0.95] }], [{ 'type': 'RandomScale', 'scale': [1, 1] }], [{ 'type': 'RandomScale', 'scale': [1.05, 1.05] }], [{ 'type': 'RandomScale', 'scale': [1.1, 1.1] }], [{ 'type': 'RandomScale', 'scale': [0.9, 0.9] }, { 'type': 'RandomFlip', 'p': 1 }], [{ 'type': 'RandomScale', 'scale': [0.95, 0.95] }, { 'type': 'RandomFlip', 'p': 1 }], [{ 'type': 'RandomScale', 'scale': [1, 1] }, { 'type': 'RandomFlip', 'p': 1 }], [{ 'type': 'RandomScale', 'scale': [1.05, 1.05] }, { 'type': 'RandomFlip', 'p': 1 }], [{ 'type': 'RandomScale', 'scale': [1.1, 1.1] }, { 'type': 'RandomFlip', 'p': 1 }]]), ignore_index=-1))