## UIE(Universal Information Extraction) ### Introduction UIE(Universal Information Extraction) is an SOTA method in PaddleNLP, you can see details [here](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/model_zoo/uie). ### How to use We save the UIE model as a entire model(Ernie 3.0 backbone + start/end layers), so you need to load model as: #### 1. clone this model to your local file ```sh git lfs install git clone https://huggingface.co/Pky/uie-base ``` If you don't have [`git-lfs`], you can also: * Download manually by click [`Files and versions`] at Top Of This Card. * Use code to download files, here is my [code example](https://github.com/HarderThenHarder/transformers_tasks/blob/063b9f4bd7c9efc1e851a2506a2dc9d082faec45/UIE/train.py#L99). #### 2. load this model from local ```python import os import torch from transformers import AutoTokenizer uie_model = 'uie-base-zh' model = torch.load(os.path.join(uie_model, 'pytorch_model.bin')) # load UIE model tokenizer = AutoTokenizer.from_pretrained('uie-base') # load tokenizer ... start_prob, end_prob = model(input_ids=batch['input_ids'], token_type_ids=batch['token_type_ids'], attention_mask=batch['attention_mask'])) print(f'start_prob ({type(start_prob)}): {start_prob.size()}') # start_prob print(f'end_prob ({type(end_prob)}): {end_prob.size()}') # end_prob ... ``` Here is the output of model (with batch_size=16, max_seq_len=256): ```python start_prob (): torch.Size([16, 256]) end_prob (): torch.Size([16, 256]) ```