whisper-khmer-base-v5
This model is a fine-tuned version of PhanithLIM/whisper-khmer-base-v4 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1001
- Wer: 59.8788
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- lr_scheduler_warmup_steps: 1000
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.2476 | 1.0 | 61 | 0.1605 | 77.2121 |
0.1921 | 2.0 | 122 | 0.1410 | 72.8485 |
0.1687 | 3.0 | 183 | 0.1286 | 68.6061 |
0.1554 | 4.0 | 244 | 0.1222 | 68.0606 |
0.1433 | 5.0 | 305 | 0.1187 | 67.9394 |
0.1348 | 6.0 | 366 | 0.1105 | 64.8485 |
0.1284 | 7.0 | 427 | 0.1107 | 64.0606 |
0.1188 | 8.0 | 488 | 0.1069 | 63.6364 |
0.114 | 9.0 | 549 | 0.1047 | 62.4242 |
0.1098 | 9.8430 | 600 | 0.1001 | 59.8788 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.5.1+cu121
- Datasets 3.6.0
- Tokenizers 0.21.0
- Downloads last month
- 10
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for PhanithLIM/whisper-khmer-base-v5
Base model
PhanithLIM/whisper-khmer-base-v4