from datasets import load_dataset from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer, DataCollatorForLanguageModeling # Load dataset from Hugging Face Hub dataset = load_dataset("Percy3822/quiz_model") # Preprocess: combine prompt + completion into single string def format_for_training(example): # Convert dict completion to string if needed if isinstance(example["completion"], dict): example["completion"] = str(example["completion"]) return {"text": example["prompt"] + "\n" + example["completion"]} dataset = dataset.map(format_for_training) # Load tokenizer and model (small model for low VRAM) model_name = "distilgpt2" # Small and fast for testing tokenizer = AutoTokenizer.from_pretrained(model_name) tokenizer.pad_token = tokenizer.eos_token # Tokenize def tokenize(batch): return tokenizer(batch["text"], padding="max_length", truncation=True, max_length=128) dataset = dataset.map(tokenize, batched=True) # Load model model = AutoModelForCausalLM.from_pretrained(model_name) # Data collator data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False) # Training args training_args = TrainingArguments( output_dir="./results", overwrite_output_dir=True, evaluation_strategy="epoch", learning_rate=5e-5, per_device_train_batch_size=2, num_train_epochs=1, save_strategy="epoch", logging_dir="./logs", logging_steps=5, push_to_hub=True, hub_model_id="Percy3822/quiz_model", ) trainer = Trainer( model=model, args=training_args, train_dataset=dataset["train"], eval_dataset=dataset["train"], # Use train for eval in testing tokenizer=tokenizer, data_collator=data_collator, ) trainer.train() # Push trained model to Hub trainer.push_to_hub()