{ "policy_class": { ":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x16c69f7c0>" }, "verbose": 0, "policy_kwargs": {}, "observation_space": { ":type:": "", ":serialized:": "gAWVZgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAADAvwAAwL8AAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAwD8AAMA/AACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFNbLTEuNSAgICAgICAtMS41ICAgICAgIC01LiAgICAgICAgLTUuICAgICAgICAtMy4xNDE1OTI3IC01LgogLTAuICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMS1sxLjUgICAgICAgMS41ICAgICAgIDUuICAgICAgICA1LiAgICAgICAgMy4xNDE1OTI3IDUuICAgICAgICAxLgogMS4gICAgICAgXZSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [ 8 ], "low": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]", "low_repr": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]", "_np_random": null }, "action_space": { ":type:": "", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null }, "n_envs": 64, "num_timesteps": 4063232, "_total_timesteps": 4000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1672374482615753000, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": { ":type:": "", ":serialized:": "gAWVnAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMai9Vc2Vycy9wYXVsLy5weWVudi92ZXJzaW9ucy9tbC1zdHVmZi0zXzEwXzgvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuBQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg==" }, "_last_obs": { ":type:": "", ":serialized:": "gAWVdQgAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYACAAAAAAAAE1Pbb3Dxy68rfI9Pfv3ID0UHIM8EupXuwAAgD8AAIA/wJCqvefqVT4b2Gw+sLbdvgTXADvmOeE9AAAAAAAAAACNZks+SQQ0P970bb1/MRe/JB7VPkJ/ur0AAAAAAAAAAHM9Gj5vOK8+1QOHvtyX6L4Obvo9Ju9tvgAAAAAAAAAAs2YOPa53iroB2IW54pOAtBRU+Dqou5s4AACAPwAAgD9mQcu8mymdPdQLqT6Cy7C+Pja6PuZo0j0AAAAAAAAAABoOmT35r2c+I+yovjoMyb7Mj4e+yqGWvQAAAAAAAAAAc+CGPb64kz9aYqc+tE4Vv8SYCD7KYVg+AAAAAAAAAAAAYoE87CGkuUqRfz0si2GyCZHuOpH7A7QAAIA/AACAP2ZwXTyPvmO6zbTkMusrhbCdare5ztuGswAAgD8AAIA/zXxEvt8Yjz4AQhg/1s7jvvFRzz3RBpg+AAAAAAAAAACCP4i+Z8I1vdjOajgSH803E1SdProhm7cAAIA/AACAPwDId71IOZy8kqqjPQAlE71sDKw9sweQPgAAgD8AAIA/s3QKPUs1tD9TrTE+NU2LvotMgT19aUi7AAAAAAAAAAAzFcq8BZfcuzqIf7uBvLQ8dBs2PVaXlr0AAIA/AACAPwBysbwULvq4iKSGuoIjjrYSgyu7iqefOQAAgD8AAIA/Td+pPSvflD4m//+9zzn3vg2rnj0Y46q9AAAAAAAAAADNvJM6FOiduuIrlrOgJqWsSsmfubPRrDMAAIA/AACAP80Lcb1kX6I+oIrUPaHa077p+DS910ELPQAAAAAAAAAA3UF2vnZhMD/RXhW+7WIfv18C5r51Tko9AAAAAAAAAACaZ1w8j0Zvup1q4bpn8i4zrPzDOhNQYbMAAIA/AACAPwClq7zhdIi6CgJXvt5z77IhLLk6ikXCMgAAgD8AAIA/TWAiPf+pWj+ydbU67kQzv6iz3D3usw89AAAAAAAAAABGGz++uHerPm4xqj65DdO+LyGBvX5idT4AAAAAAAAAAFoUpb3pXV+8PRngPaKqgT1nT6i9S5bAPAAAAAAAAIA/oI4avjW0/D5mS4g+a4Qdv3Hz7b30NTw+AAAAAAAAAAAmWYq+t++PPyOEi763lR+/RnsFv4PyG74AAAAAAAAAAEBqlr0pGCO67OghvFXXQznAKkw75YK0uAAAgD8AAIA/mjDkvEjpmrpSjoy1p5efsCo68bryVLY0AACAPwAAgD8T5QK+ei4vPhiciT7yoti+teaRPA1D/z0AAAAAAAAAADOEEz2wZ6I/uphpPp4ADb9vcKI9UfkQPgAAAAAAAAAATUBYvRVfLj9B7Jw8DJknv8sUD73TMSU9AAAAAAAAAAANA5G95fNiPxI67rxnGxe//2PbvWmAiTwAAAAAAAAAAE0yKD63qSE/eOrlvQqpFb82AnQ+dr5/vQAAAAAAAAAA7SpyPt+yNT9j2rK9FzUKvzmtsz7K8K69AAAAAAAAAAAz15C7KVluP5o1JLsPJT+/LxssvOaLkTwAAAAAAAAAADO07bwMQy0/ljknvBv0JL9vGX69XAgVvAAAAAAAAAAA5j5+PSTy2T520kG90WMov7+Boz3ptpS9AAAAAAAAAABaRls+zqBWP1HVyj2PyQO/QIy/PmjDuL0AAAAAAAAAAMAAAr5Wp5o/UOXXvkk0G78jIHK+axZhvgAAAAAAAAAAAMzlOyl0SLoZxUG8kYcFssXzGTtbTfkzAACAPwAAgD8zM9o5DkmwvDgs1zsJA688MCfqPEacDj0AAIA/AACAPzOoVr02qb0/NVuNvoq0U72qbsy9Bk0XvgAAAAAAAAAAMwFLvcaooj8F09C99lkxvwy5u73aD/S8AAAAAAAAAACATjO9AZEePu7WXT0rgbm+VfqEvCh3/zwAAAAAAAAAAAA1hTzSlIm7n6i/u2kKkTsAFfQ8FkmKvAAAgD8AAIA/Tfl9PaF6jj+KNRU+baUpv9E/Fz6+DWk9AAAAAAAAAADNtX29C50vP1VxAj1aMxK/lFwfvRVNXj0AAAAAAAAAANqZ/r3vnyw/g+SBPOL2Kb+8LS2+jrvxOgAAAAAAAAAAc+Q0PmRFvz4Babq+8JbkvvV96j0uUle+AAAAAAAAAACaAdK8cfNVu+d0SLzI94Q84cmfPMtFZb0AAIA/AACAP83ctrqDdCK8thrNPXbTij2jFBa83q7VOwAAgD8AAIA/mrMAvGSVIj+4L1G9EgcMvxLHy7pUh7i7AAAAAAAAAABmeaw8Ci1VPDAhVr7RA1y+mKE9vnDOPj8AAIA/AAAAAHNkpz3fVK0+/gNHvt0k37641UU9QkohvgAAAAAAAAAAzckRvTeXez+8I5C9A39CvypIjb3dy7y8AAAAAAAAAABT1x6+ZHIqP6avez1RzCe/QBKAvncytD0AAAAAAAAAAM3omzw4H627nLYKvkrV+LtcxHc6EkMAvQAAgD8AAIA/cNe3vveDXD9Ws3s8ywAWv/lFC7/zwPY9AAAAAAAAAADKS7Q+FkxyP4tcDbyREhS/3rQPPw7cW74AAAAAAAAAAADQjLuFy/q7doHWvGQzN7lUVWY9U3XsugAAgD8AAIA/2jKXvZBC9j4x6cc98JgWv2h4Cr5vz709AAAAAAAAAABm1WA9+CWSPhqlrb4nUcK+5DIVvhrfbr4AAAAAAAAAAOZCL70WZkw92vCLPaOJtb6/evM4wAbiuwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYktASwiGlIwBQ5R0lFKULg==" }, "_last_episode_starts": { ":type:": "", ":serialized:": "gAWVswAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiS0CFlIwBQ5R0lFKULg==" }, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": { ":type:": "", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/YLdsO20ckCUhpRSlIwBbJRLsIwBdJRHQJ6wgQ9RrJt1fZQoaAZoCWgPQwhdpFAWPnJyQJSGlFKUaBVL02gWR0CesJoBJZntdX2UKGgGaAloD0MIxofZy/brcUCUhpRSlGgVS6poFkdAnrEdgOSW7nV9lChoBmgJaA9DCCbGMv0S8XFAlIaUUpRoFUu4aBZHQJ6xKYZ2pyZ1fZQoaAZoCWgPQwhPkUPEzZRwQJSGlFKUaBVLt2gWR0CesTfgJkXldX2UKGgGaAloD0MI9MRztkArcECUhpRSlGgVS7doFkdAnrFXQQcxTXV9lChoBmgJaA9DCInuWdcoSHJAlIaUUpRoFUvJaBZHQJ6xYJ3PiUB1fZQoaAZoCWgPQwhl3qrrEBhzQJSGlFKUaBVL1GgWR0CesXdcjZ+QdX2UKGgGaAloD0MIOutTjsnBcUCUhpRSlGgVS7loFkdAnrGLf+CK8HV9lChoBmgJaA9DCCNqos9HEXFAlIaUUpRoFUu2aBZHQJ6xoPrfLs91fZQoaAZoCWgPQwjjb3uCRLtwQJSGlFKUaBVLyWgWR0CesdbpeNT+dX2UKGgGaAloD0MIEw8om/L6c0CUhpRSlGgVS8doFkdAnrHiu+yquXV9lChoBmgJaA9DCPz/OGECxnJAlIaUUpRoFUu3aBZHQJ6x9pmEoOR1fZQoaAZoCWgPQwgGuCBb1nhzQJSGlFKUaBVLymgWR0Cesjl/YraudX2UKGgGaAloD0MIajF4mPaMc0CUhpRSlGgVS9loFkdAnrI4f0VafXV9lChoBmgJaA9DCKfOo+I/OHBAlIaUUpRoFUu2aBZHQJ6yNv863iJ1fZQoaAZoCWgPQwjrcd9q3WlwQJSGlFKUaBVLxmgWR0Cesk67/XGwdX2UKGgGaAloD0MIacai6awockCUhpRSlGgVS8loFkdAnrJaqfe1r3V9lChoBmgJaA9DCEJ8YMd/QHJAlIaUUpRoFUuuaBZHQJ6yZKjBVMp1fZQoaAZoCWgPQwj7srRTM2dyQJSGlFKUaBVLyGgWR0CesmLVFx4qdX2UKGgGaAloD0MI3c8pyE/Rb0CUhpRSlGgVS6RoFkdAnrKjhLoOhHV9lChoBmgJaA9DCDSfc7frZ3FAlIaUUpRoFUvOaBZHQJ6y1/y5I6N1fZQoaAZoCWgPQwg6V5QSQjRwQJSGlFKUaBVLtmgWR0Cesv4yoGY8dX2UKGgGaAloD0MIM4l6waeJbkCUhpRSlGgVS9BoFkdAnrMfyCnP3XV9lChoBmgJaA9DCB+6oL6lfXNAlIaUUpRoFUvBaBZHQJ6zHGDL8rJ1fZQoaAZoCWgPQwiX5lYI649zQJSGlFKUaBVLw2gWR0Ces0nh86V/dX2UKGgGaAloD0MIGR2QhD1ackCUhpRSlGgVS6doFkdAnrNUnCwbEXV9lChoBmgJaA9DCIVE2sYfE3NAlIaUUpRoFUu6aBZHQJ6zZxp+MIh1fZQoaAZoCWgPQwgHKXgKuTt0QJSGlFKUaBVL8mgWR0Ces3kyULUkdX2UKGgGaAloD0MIelG7X8XwcECUhpRSlGgVS7doFkdAnrOC1uzhP3V9lChoBmgJaA9DCABw7NmzmHJAlIaUUpRoFUvVaBZHQJ6zyZgG8mN1fZQoaAZoCWgPQwisAyDual9zQJSGlFKUaBVLyWgWR0CetAY/Vy3kdX2UKGgGaAloD0MIGXYYkz7CckCUhpRSlGgVS7BoFkdAnrReXE61cHV9lChoBmgJaA9DCBjNyvbhbHBAlIaUUpRoFUu7aBZHQJ60dU3n6mB1fZQoaAZoCWgPQwiN1HsqpyVPQJSGlFKUaBVLfGgWR0CetKfXf642dX2UKGgGaAloD0MIy/J1Gf5UcUCUhpRSlGgVS75oFkdAnrU2MXJo03V9lChoBmgJaA9DCM1c4PJYx3BAlIaUUpRoFUuqaBZHQJ61WYNRWLh1fZQoaAZoCWgPQwiuEFZjSdBxQJSGlFKUaBVLzGgWR0CetXHyVfNSdX2UKGgGaAloD0MIls/yPLjpc0CUhpRSlGgVS75oFkdAnrX7Zi/fwnV9lChoBmgJaA9DCOCgvfp4LnFAlIaUUpRoFUuyaBZHQJ62B6C17Y11fZQoaAZoCWgPQwh8X1yq0rdxQJSGlFKUaBVLt2gWR0Ceth3Td+G5dX2UKGgGaAloD0MIG2MnvMQMcECUhpRSlGgVS7xoFkdAnrYncDbJwXV9lChoBmgJaA9DCJD0aRU9X3FAlIaUUpRoFUuoaBZHQJ62PZJ04ip1fZQoaAZoCWgPQwjWx0Pf3YtzQJSGlFKUaBVL2mgWR0CetlqagElmdX2UKGgGaAloD0MIG2K85pXWc0CUhpRSlGgVS7hoFkdAnrZaG+K0lnV9lChoBmgJaA9DCOkrSDPWbHBAlIaUUpRoFUu6aBZHQJ62cD7qIJt1fZQoaAZoCWgPQwhJERlWsVdzQJSGlFKUaBVLw2gWR0Cetsc8kleGdX2UKGgGaAloD0MIMxr5vKJqcUCUhpRSlGgVS91oFkdAnrbc/+sHSnV9lChoBmgJaA9DCKz9ne3RuXFAlIaUUpRoFUvRaBZHQJ625SP2f051fZQoaAZoCWgPQwhJ1uHoqs1xQJSGlFKUaBVLm2gWR0CetvDKoybhdX2UKGgGaAloD0MIg8MLIpKZcUCUhpRSlGgVS7NoFkdAnrcnbRF7U3V9lChoBmgJaA9DCPLOoQyVuHFAlIaUUpRoFUvIaBZHQJ63Mt29tdl1fZQoaAZoCWgPQwgAcy1agPtwQJSGlFKUaBVLxWgWR0Cet4C8OCoTdX2UKGgGaAloD0MIVTTW/s5/ckCUhpRSlGgVS7hoFkdAnreaY3Ns33V9lChoBmgJaA9DCG/Vdajm1HJAlIaUUpRoFUvHaBZHQJ63p2Qnx8V1fZQoaAZoCWgPQwjNBS6PdTd0QJSGlFKUaBVL5mgWR0Cet7DBMzuXdX2UKGgGaAloD0MIRUjdzv6ncUCUhpRSlGgVS85oFkdAnrfEHIIWxnV9lChoBmgJaA9DCPOv5ZUrNnFAlIaUUpRoFUvFaBZHQJ630nRb8m91fZQoaAZoCWgPQwjOcW4TLrBxQJSGlFKUaBVLw2gWR0CeuAy925hCdX2UKGgGaAloD0MI7nvUX68IckCUhpRSlGgVS6poFkdAnrhRpQDV6XV9lChoBmgJaA9DCMuCiT9K0HNAlIaUUpRoFUvdaBZHQJ64cx9G7SR1fZQoaAZoCWgPQwjerwJ8t7VyQJSGlFKUaBVLyGgWR0CeuJ5jH4oJdX2UKGgGaAloD0MI4xdeSTJHckCUhpRSlGgVS6poFkdAnrimb1AZ9HV9lChoBmgJaA9DCOChKNAnXnJAlIaUUpRoFUvIaBZHQJ649xEORT11fZQoaAZoCWgPQwjdJXFWhKJyQJSGlFKUaBVLumgWR0CeuT/3WWhRdX2UKGgGaAloD0MIEf+wpYc8dECUhpRSlGgVS9toFkdAnrlm6f8Mu3V9lChoBmgJaA9DCH2utmL/63FAlIaUUpRoFUvAaBZHQJ65ZhH9WIZ1fZQoaAZoCWgPQwgRx7q4DdNzQJSGlFKUaBVL3GgWR0CeuZ+qioKldX2UKGgGaAloD0MI5PT1fA1tckCUhpRSlGgVS9loFkdAnrmeDOC5E3V9lChoBmgJaA9DCJpd91akIXJAlIaUUpRoFUuvaBZHQJ65q9qUNa11fZQoaAZoCWgPQwg8+l+uhbVxQJSGlFKUaBVLsmgWR0CeubTI/7iydX2UKGgGaAloD0MI6lxRSkhPc0CUhpRSlGgVS7poFkdAnroRT4tYjnV9lChoBmgJaA9DCLN+MzFdEXNAlIaUUpRoFUvVaBZHQJ66GUQkHD91fZQoaAZoCWgPQwjbvkf9dTxyQJSGlFKUaBVLyWgWR0CeuhiS7oStdX2UKGgGaAloD0MIr5emCPBXcUCUhpRSlGgVS7hoFkdAnromqxTsIHV9lChoBmgJaA9DCKVrJt/s0XFAlIaUUpRoFUuzaBZHQJ66cu/UONJ1fZQoaAZoCWgPQwhYVpqUAn5xQJSGlFKUaBVLv2gWR0CeunOJcgQpdX2UKGgGaAloD0MIcvkP6ffUckCUhpRSlGgVS8poFkdAnrp/OIInjXV9lChoBmgJaA9DCHiAJy1cPW9AlIaUUpRoFUvgaBZHQJ66n7VJ+Uh1fZQoaAZoCWgPQwjQQgJG1+JxQJSGlFKUaBVLvWgWR0CeuquTRplCdX2UKGgGaAloD0MIk+F4PsM5ckCUhpRSlGgVS6hoFkdAnrqrgsK9f3V9lChoBmgJaA9DCIyFIXL6SHFAlIaUUpRoFUvdaBZHQJ66tYaHbh51fZQoaAZoCWgPQwjQmh9/6TpyQJSGlFKUaBVL0mgWR0CeusLDAJswdX2UKGgGaAloD0MInu+nxku7cUCUhpRSlGgVS6loFkdAnrrARsdkrnV9lChoBmgJaA9DCLdCWI0lpHBAlIaUUpRoFUvQaBZHQJ66/QKKHfx1fZQoaAZoCWgPQwj8cfvlU0FzQJSGlFKUaBVL0mgWR0CeuzA80UGndX2UKGgGaAloD0MIJEVkWEUvc0CUhpRSlGgVS7poFkdAnrs6UiY9gXV9lChoBmgJaA9DCEYKZeErpXNAlIaUUpRoFUvAaBZHQJ67Rjd56dF1fZQoaAZoCWgPQwiymxn9KAByQJSGlFKUaBVL4mgWR0Ceu1bblA/tdX2UKGgGaAloD0MIeLRxxFq7cECUhpRSlGgVS8hoFkdAnrtzfBN21XV9lChoBmgJaA9DCNpWs8548HJAlIaUUpRoFUvGaBZHQJ67pkjHGS91fZQoaAZoCWgPQwg7HF2lO+VwQJSGlFKUaBVLw2gWR0Ceu6Rc/t6YdX2UKGgGaAloD0MIDD1i9JwycUCUhpRSlGgVS69oFkdAnrvk9IPK+3V9lChoBmgJaA9DCCFcAYX6AXNAlIaUUpRoFUvXaBZHQJ68HmSyMUB1fZQoaAZoCWgPQwgQ5+EEprhwQJSGlFKUaBVLuWgWR0CevDDVH4GmdX2UKGgGaAloD0MIIhlybH0SckCUhpRSlGgVS8xoFkdAnrxYR7JGOXV9lChoBmgJaA9DCO4jtyYd1HJAlIaUUpRoFUuraBZHQJ68jMHKOkt1fZQoaAZoCWgPQwgmbarukZtvQJSGlFKUaBVLrGgWR0CevKqz7di2dX2UKGgGaAloD0MIZOjYQWWHdECUhpRSlGgVS75oFkdAnryoFeOXFHV9lChoBmgJaA9DCGnjiLX45nNAlIaUUpRoFUvRaBZHQJ68x2NedCp1ZS4=" }, "ep_success_buffer": { ":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg==" }, "_n_updates": 310, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 5, "clip_range": { ":type:": "", ":serialized:": "gAWVHwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMdi9Vc2Vycy9wYXVsLy5weWVudi92ZXJzaW9ucy8zLjEwLjgvZW52cy9tbC1zdHVmZi0zXzEwXzgvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuBQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjHYvVXNlcnMvcGF1bC8ucHllbnYvdmVyc2lvbnMvMy4xMC44L2VudnMvbWwtc3R1ZmYtM18xMF84L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu" }, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null }